
JPRS-CST-92-020
28 October 1992

JPRS Report—

Science &
Technology

China
High-Performance Computer Systems

Approved for public release;
Distribution Unlimited

/•

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

Science & Technology
China

High-Performance Computer Systems

JPRS-CST-92-020 CONTENTS 28 October 1992

Performance, Evaluation of Parallel Graph Rewriting Abstract Machine PAM/TGR
[Tian Xinmin, Wang Dingxing, et al; XIAOXING WEIXING JISUANJIXITONG, Aug 92] 1

Software Development for 980-STAR Systolic Array Computer System
[Liu Risheng; JISUANJI YANJIU YU FAZHAN, Feb 92] 8

Parallel Processing System Using RISC Technology
[Chen Renfu and Xu Youhui; JISUANJI YANJIU YU FAZHAN, May 92] 11

Multimicroprocessor System AP85
[Zhou Yaorong and Zhang Daqing; JISUANJI YANJIU YU FAZHAN, Jul 92] 17

Software Pipelining Based VLIW Architecture
[Su Bogong, Tang Zhizhong, et al; JISUANJI XUEBAO, Jul 92] 21

VLIW Optimizing Compiler Adopting Two-Level Software Pipelining
[Su Bogong, Wang Jian, et al; JISUANJI XUEBAO, Jul 92] 28

JPRS-CST-92-020
28 October 1992

Performance, Evaluation of Parallel Graph
Rewriting Abstract Machine PAM/TGR
92FE0850 Shenyang XIAOXING WEIXING JISUANJI
XITONG [MINI-MICRO SYSTEMS] in Chinese
Vol 13, No 8,Aug 92 pp 1-9

[Article by Tian Xinmin [3944 2450 3046], Wang
Dingxing [3769 7844 5281], and Shen Meiming [3088
5019 2494] of the Qinghua University Department of
Computer Science and Technology, Beijing: "Perfor-
mance and Evaluation of a Parallel Abstract Machine
for Term Graph Rewriting (PAM/TGR)1*1"; MS
received 16 May 92]

[Text] This article begins with a brief description of the
design and implementation of a parallel abstract
machine for term graph rewriting (PAM/TGR) based on
the heterogeneous parallel graph rewriting execution
model (HPGREM). It then discusses performance eval-
uation standards oriented toward the PAM/TGR and
describes the possible occurrence of two types of accel-
eration phenomena, over acceleration and ill accelera-
tion, in parallel multiprocessor systems and provides a
definition of over-speedup ratio and ill-speedup ratio.
On this foundation, we tested and evaluated the perfor-
mance of the PAM/TGR based on typical benchmarks.
The results of the tests show that the PAM/TGR
machine has good acceleration results and a high pro-
cessor utilization rate, that it can effectively avoid
serious ill speedup phenomena, and that its system
performance is superior to similar systems in foreign
countries at the present time.

Key terms: Parallel graph rewriting model, parallel
abstract machine, benchmark program, performance
evaluation

I. Introduction

Extremely significant advances have been made in
work in many areas in vanguard realms of research on
parallel computers, especially the generally acknowl-
edged successful integration of parallel computing
technology with artificial intelligence technology,
which has effectively spurred the development of
parallel processing technology131. The development of
VLSI technology and various new computing technol-
ogies have also provided effective support for con-
structing high-performance parallel processing sys-
tems. Theoretical research on parallel graph rewriting
computation technology as a new computing tech-
nology can be traced back to the 1930's. At that time,
A. Church and other logicians did creative research
on theoretical aspects of rewriting computation.
During the past several years, extremely significant
research achievements in rewriting computation tech-
nology in areas like time state logic, program design
logic, formalized software development, and so on
have aroused interest and attention among people in
the computer science field. Rewriting computation
theory as the study of basic theory on computability is

focused on defining precise symbolic system descrip-
tions and usable mechanical methods for carrying out
evaluation operations and data, which fundamentally
determines that computing based on rewriting has
superior mathematical properties. We used intensive
research on graph rewriting computation theory as a
basis for proposing an expanded graph rewriting
model (EGRM)112,131 for use in supporting the effec-
tive implementation of functional language and par-
allel logic language. Because the special-purpose hard-
ware designed to support parallel graph rewriting
computation is restricted by data relationships among
tasks, the hardware is too expensive. Thus, using
several commercially available single processors to
put together a parallel multiprocessor system with a
restructurable topological architecture to support the
highly effective implementation of parallel graph
rewriting computation has become a very significant
research topic. The key to the problem lies in how to
compensate for the semantic differences between the
rewriting model and the Von Neumann model used in
the processors now currently available commercially,
so we designed and implemented a new parallel
abstract machine for term graph rewriting (PAM/
TGR) for use as a interface between the rewriting
model and the Von Neumann model17,9,101. The
PAM/TGR is a parallel computing system that sup-
ports multiple types of declarative languages oriented
toward artificial intelligence applications and
research on it will provide substantial research expe-
rience for parallel implementation technologies for
declarative languages.

This article first provides a brief description of the
parallel abstract machine for term graph rewriting
(PAM/TGR) and its architecture and then provides and
discusses performance evaluation standards oriented
toward PAM/TGR. Part IV of this article describes and
analyzes the results of performance tests of the parallel
abstract machine PAM/TGR based on benchmarks and
concludes by comparing the operational performance of
several benchmark programs in the PAM/TGR to the
performance of similar systems in foreign countries and
offers conclusions.

II. The Parallel Abstract Machine PAM/TGR and Its
Architecture

There are two typical abstract machines oriented
toward effective implementation of declarative pro-
gram design languages: 1) The sequential graph
rewriting function abstract machine G-machine11]
proposed by L. Augustsson and 2) The sequential
logic abstract machine WAM-machine proposed by
D. H. D. Warren121. Unlike these generally known
sequential abstract machines, parallel abstract
machines based on different parallel execution
models are still in the research stage. It should be
noted that the G-machine and WAM-machine cannot
simply be expanded into parallel abstract machines
that support the corresponding functional programs
and logic programs. For this reason, we proposed and

JPRS-CST-92-020
28 October 1992

designed the parallel abstract machine PAM/TGR
and corresponding architecture based on the hetero-
geneous parallel graph rewriting execution model
HPGREM. Our design goals were:

1. The PAM/TGR should be capable of effectively
supporting functional language and logical language
computing semantics under a unified framework of
expanded graph rewriting computation.

2. Effectively support the heterogeneous parallel graph
rewriting execution model.

3. Absorb the advantages of the G-machine, WAM, TIM,
<v, G>-machine, FAM, and other abstract machines.
Develop parallelism with an appropriate granularity on
the basis of fully utilizing single-processor resources.

4. Easy conversion of attributed AND/OR graphs into
PAM/TGR instructions.

5. Suitable for effective implementation in distributed
memory or shared memory multiprocessor systems.

The parallel abstract machine PAM/TGR is composed
of four parts: the memory organization, data representa-
tion, instruction set and machine instruction execution
algorithm, and multiprocessor architecture19,111.

A. Memory organization

The parallel abstract machine memory organization is
composed of five parts: the Code Space, Data Space,
Stack Space, Heap Space, and Register Group.

1. Code space: the executable codes and control infor-
mation corresponding to these codes generated by the
storage compiler.

2. Data space: local solution space used to record the
final values and rewriting computation graphs for argu-
ment nodes.

3. Stack space: the top nodes and rewritable nodes used
to store rewritable sub-graphs and the computing envi-
ronment of the rewritable nodes.

4. Heap space: used to store the construct nodes, lazy
rewriting nodes, and structured data generated by exe-
cuted graphs.

5. Register group: used to store the stack top pointers for
each of the stacks, currently rewritable sub-graph top
node pointers, and recoverable garbage space chain tail
pointers.

We use the unified name of graph rewriting space for
these five types of memory space for the actual memory
system of the heterogeneous parallel graph rewriting
execution model. The execution graph is the memory
object of this system and the graph nodes are the most
fundamental units. Actually, each graph node is a com-
plex data structure that is composed of a graph node
identifier, operation sub-name, certain parameter fields,
and a control field in the form:

Id: Op (Arg„ Arg2,..., Arg„, Ctl„ Ctl2,.... Ctlm)

Id is the address of the graph node in the graph space, Op
is the node operator, Ar& is the parameter node, and Ctlj
is the control node. It should be explained that the type
of control field used is closely related to the actual
execution control model. For the shared graph nodes,
however, the control field is essential. In the organiza-
tion of the parallel abstract machine memory system, we
use a low-frequency data copying tactic to compress the
rapid consumption of memory space by the independent
environment during the rewriting task execution pro-
cess. A pointer re- initiation and copying tactic is used
for complex data structure citation and small granularity
non-moving tasks to reduce environment copying over-
head and to always place the overall computing environ-
ment for rewritable tasks directly in the heap space
pointed out by the current environment stack stack-top
pointer according to the category of parameter node,
thereby improving rewriting efficiency.

B. Data representation and graph node format

The data in the parallel abstract machine is composed of
two fields: an indicator field and value field. The indi-
cator field stores the data category and the value field
stores a value or pointer depending on the category
identification in the indicator field. The data categories
in the PAM/TGR are: integer, real type, Boolean, char-
acter, character string, atomic, null atomic, construct,
user-defined construct, tuple, and argument. See refer-
ence [11] for a detailed definition of the storage format
for each data category.

It should be explained that the graph node formats
CONS, CONST, REF, and OPR are category indicator
classifications in the data representation. They have a
more regular meaning and are a type of classification tag.
This type of classification aids in graph space allocation
and scratch area recovery.

C. Parallel abstract machine PAM/TGR instruction set

The instruction set of the parallel abstract machine
contains 10 kernel instructions. Declarative programs
use multilevel programs for conversion and translation
into the PAM/TGR instruction sequence. Finally, we
converted this instruction sequence into execution
object codes that can be executed in a multiprocessor
system composed of 16 Transputers. See references [9]
and [11] for the PAM/TGR instruction form and
semantic definitions. Theoretically, the parallel abstract
machine PAM/TGR is suitable for implementation in
shared memory multiprocessor systems and is also suit-
able for implementation in distributed memory multi-
processor systems. The only difference is the difference
in synchronous implementation modes for parallel tasks.
For the data expressions corresponding to the parallel
abstract machine PAM/TGR, the abstract machine
instructions have six types of high-level addressing
modes, as described in reference [11]. Adoption of these
six types of high-level addressing modes enables the
Compiler to process scalar data, structured data, and
rewriting closures using a simple unified model. It
should be explained that the instruction set for the
parallel abstract machine PAM/TGR does not include

JPRS-CST-92-020
28 October 1992

instructions related to task requests and inspection of
this type of request because the execution behavior of
these two instructions does not affect the state of abstract
mächine execution. The state of each stack and the state
of the heap space are not affected, whereas during
operation the task dynamic management system per-
forms the function of inspecting resource states and
distributing parallelable tasks. The abstract machine
instruction execution algorithm describes the state con-
version of the abstract machine and simultaneously
directly maps the abstract machine instructions in the
mapping algorithm of its architecture17,"].

D. The architecture of the parallel graph rewriting
abstract machine PAM/TGR

Parallel multiprocessor architectures can generally be
divided into two categories. One category is loosely-
coupled distributed memory multiprocessor systems in
which each processor communicates via an interconnec-
tion network at a communication speed that is determined
by the network bandwidth. The second category is tightly-
coupled shared memory multiprocessor systems in which
the communication speed among processors is determined
by the memory bandwidth. Both of these types of multi-
processor systems pose the problem of network delays or
memory delays due to the communication or memory
bandwidth in development of computing parallelism to
support parallel graph rewriting execution models. If fine
granularity parallelism is being developed, it is quite
possible that the large amount of accessing, communica-
tion, and environment copying that result may offset the
benefits from developing computing parallelism. As a
result, the design of a multiprocessor architecture to
develop coarse granularity activated conservative paral-
lelism based on a heterogeneous parallel graph rewriting
execution model adopts a distributed memory multipro-
cessor architecture1'1'. The parallel abstract machine
PAM/TGR is a loosely-coupled multiprocessor system
composed of several processing elements [PE] with local
memory via an interconnection network. By cooperative
operation of the task distributor (TD) on each PE, the
execution graph is distributed in a passive manner to each
idle PE and each PE carries out rewriting and conversion
of each of the rewritable subgraphs that are distributed to
the local graph memory space. The local graph memory
space in each PE in the PAM/TGR independently com-
piles and rewrites the required parameter environments
that are obtained via the interconnection network in a
message passing mode. In an Eager computing mode, the
parameter environment is always distributed to the corre-
sponding PE along with the rewrite nodes (rewriteable
nodes). The organizational model of the PAM/TGR is a
fully distributed model, which is entirely different from
the previously constructed virtual global memory space
supported graph rewriting computation model. This model
can avoid the problem of environmental consistency
implicit in shared memory space and effectively support
the dynamic distribution of execution graphs.

This section provides a brief description of the design of
the parallel graph rewriting abstract machine PAM/TGR

and its architecture. The high-level instruction set of the
PAM/TGR is clear and simple, has strong applicability,
and is capable of effectively supporting heterogeneous
parallel graph rewriting execution models. We have imple-
mented the PAM/TGR machine in a hardware environ-
ment constructed from a Transputer array. Moreover, the
PAM/TGR is a scalable multiprocessor system with a
topological architecture that can be restructured by using
programs.

III. Performance Evaluation Standards for the Parallel
Graph Rewriting Abstract Machine PAM/TGR

Performance testing and evaluation for the parallel multi-
processor system is an important aspect of its system
performance. There is an endless stream of parallel com-
puter systems now being promoted internationally, for
example the MARK-II based on the Intel 80286/80287,
the MARK-III based on the Motorola 68020/68881, and
the distributed memory system NCUBE 6400 series pro-
moted by the NCUBE Company in the past few years
(maximum of 8,192 processing elements). As these multi-
processor systems have appeared, a series of questions like
how to test and evaluate these systems, how to exploit
system potential and determine their scope of applications,
and so on have become increasingly important. In general,
testing and evaluation methods for parallel multiprocessor
systems can be divided into three categories: 1) Hard
testing methods for testing hardware performance; 2) The-
oretical analysis methods based on abstract models; 3) Soft
testing methods based on benchmark programs. Hard
testing usually only provides component performance and
is a theoretical peak value. Thus, its actual applications
value is not great. The theoretical analysis method based
on abstract models mainly uses simulation analysis and
probability statistics to obtain communication perfor-
mance, response time, and other theoretical values. These
theoretical values play a substantial guiding role in actual
work but are often quite different from the actual perfor-
mance. Thus, people usually use a soft testing method
based on benchmark programs. The soft testing method is
simple and direct and has been universally adopted for this
reason. We used this type of soft testing method in
performance testing and evaluation of the parallel graph
rewriting abstract machine PAM/TGR.

There are quite a few indices for evaluating the perfor-
mance of parallel systems and the scope of evaluations is
very broad. Their main differences from sequential sys-
tems are the use of time overlapping, resource sharing, and
other modes to increase program execution efficiency. The
parallel graph rewriting execution system places no added
burden on users when using this system and the inherent
parallelism in the program is automatically developed by
the PAM/TGR and the inherent sequentialness is automat-
ically protected by the PAM/TGR. As a result, ML and
PARLOG programs on sequential machines can operate
on the PAM/TGR machine without revisions, and there
are substantial acceleration benefits. We tested and evalu-
ated the PAM/TGR system in execution time, speedup
ratio, execution efficiency, rewriting speed, and other
areas. The related basic concepts are defined below:

JPRS-CST-92-020
28 October 1992

Definition 3.1: Execution time

Execution time is the time spent in executing program P
in a certain parallel environment, and is recorded as T
(in seconds).

Definition 3.2: Speedup

Assuming that for program P, Tt is the execution time of
program P with i processors, the speedup ratio Sn for n
processors is defined as Sn - T,/Tn.

Definition 3.3: Execution efficiency

The execution efficiency of program P in n processors is
E„ - Sn/n, and the size of En is a reflection of the
utilization rate of the n processors.

Definition 3.4: Rewriting speed

Assuming that for program P, R is the rewriting steps in
the process of executing program P, the rewriting speed
for n processors is R„ - R/Tn (rewriting steps/second).

In these four indices, the speedup ratio can be divided
into three situations: over acceleration, normal acceler-
ation, and ill acceleration. These are defined as:

Definition 3.5: Over speedup

Assuming that for program P, if the speedup ratio for
program P in n processors is Sn>n, then En> 1 gives an
over speedup ratio On - (S„/n>-l

Definition 3.6: Normal speedup

Assuming that for program P, if the speedup ratio Sn for
program P in n processors satisfies 1 < Sn < n, then 0 <
En < 1, so the normal speedup ratio is N„ - Sn.

Definition 3.7: 111 speedup

Assuming that for program P, if the speedup ratio in n
processors is Sn < 1, then the ill speedup ratio is In -1 - Sn.

Over speedup can only appear accidentally under two
conditions: 1) When solving search problems and NP
problems for artificial intelligence, multiple processors
computing in parallel accidentally find the shortest solu-
tion path. 2) When program P is operating in a single
processor, because of memory capacity limits, over accel-
eration can occur in a situation in which the overhead is
very large due to the processor frequently carrying out
space recovery and reallocation when multiple processors
are operating and each processor expends very little over-
head in this area. This condition occurred in testing the
PAM/TGR. The ideal speedup ratio of parallel programs
in n processors is n and the ideal speedup ratio of sequen-
tial programs is 1. However, because of restriction by the
communication, synchronization, and other added over-
head in developing computing parallelism, and restriction
by the inherent parallelism of the algorithm and the
program itself, the speedup ratio of parallel programs is
generally in the range (l,n). The speedup ratio for sequen-
tial programs is 0 < Sn < 1.

Figure 1 is a diagram of the speedup ratio regional
distribution for 16 processors.

16 -

12

8 -

4 -

Speedup

I

i

I

I

j

•

.. ..

- appends;?.**

2.

1 1v 1 1 1 1 1

0 4 8 12 16 FEa
Figure 1. Speedup Ratio Regional Distribution

Key: 1. Measured curve for append program; 2. Ideal
curve

In the figure, AQ is the normal acceleration region, A, is the
over acceleration region, and A2 is the ill acceleration
region. A relatively ideal parallel system would have these
characteristics when executing the chosen benchmark: 1) A
benchmark with good parallelism can produce a good
speedup ratio; 2) Sequential codes without parallelism can
be executed with high efficiency in parallel systems
according to their execution models in sequential systems;
3) Development of parallelism can produce a relatively good
balance between the traffic and amount of computation and
develop parallelism with a rational granularity. We
described above several standards for testing and evaluating
the performance of parallel multiprocessor systems. The
selection of a rational and effective benchmark based on
these standards is very important for making a fair evalua-
tion of the performance of a parallel computer system.

IV. PAM/TGR Performance Testing and Evaluation
Based on Benchmarks
Evaluation of the performance of parallel computer systems
and sequential computer systems requires that the bench-
marks selected be substantially representative and that they
at least be capable of representing a group of identical or
similar computing problems and not involve certain special
cases, so that the conclusions drawn from these benchmarks
can be extended naturally in applications to similar prob-
lems. Based on this type of guiding ideology and focusing on
execution time, speedup ratio, execution efficiency, and
other aspects, and taking into consideration typical pro-
grams for parallel systems for oriented declarative programs
used for testing in foreign countries, we selected the fib,
prime, hanoi, queen, tak, qsort, and other typical programs
as the programs for testing the PAM/TGR system. Table 1
lists the results of performance tests for the corresponding
benchmarks in the PAM/TGR system and Figures 2(a) to
2(d) plot the acceleration curves for several test programs
run on the PAM/TGR.

JPRS-CST-92-020
28 October 1992

Table 1. Results of Testing Several Benchmark Programs in the PAM/TGR
Benchmark
program

Ti (seconds) T4 (seconds) T8 (lecondf) Tic (MCOBds) Sl6 El6 Rl6(rewrltlng
steps/second)

fib(30XM) 39.6084 15.2075 6.716 4.2409 9.34 58.375% 1373K
fib(37XM) 1148.0182 438.5607 168.0175 104.1888 11.02 68.875% 1623K
prime(100000KM) 26.6839 7.7211 3.9589 2.0267 13.17 82.31% 987K
prime(200000XM) 61.3976 18.0924 9.2527 4.6899 13.09 81.81% 853K

hanoi(20XP) 121.9000 30.5136 15.2879 8.0828 15.08 94.25% 778K

hanoi(21XP) 243.7969 60.9885 30.5328 15.8271 15.40 96.25% 795K

queen(8XP) 20.8886 12.0197 2.5026 2.4459 8.5402 53.37% 307K

queen(9XP) 183.9586 100.0671 20.3672 10.0980 18.22 113.85% 368K.

Note: M in the table represent» the use of the ML program in the test while P represent» the uae of the PARLOG program in the test.

1 Speedap

16 PEi

12 8 12 16 PEa i 4 8
(c) (d)

Figure 2. Acceleration Curves for Some Benchmark Programs Run On the PAM/TGR

16 PEi

JPRS-CST-92-020
28 October 1992

In testing the PAM/TGR system, the benchmarks we
selected like die queen problem, prime problem, (fanta)
problem, and so on are all actual problems in the fields of
mathematics and AI, and all of them have specific com-
puting scales and time and space consumption. This is
especially true of the implementation of descriptions based
on functional and logical program design languages, which
place rather high requirements on effective management of
memory and development and control of parallelism.
From another side, they can also be used to examine the
PAM/TGR system's automatic development and manage-
ment of computing parallelism. The test results to examine
the PAM/TGR system performance show that the
rewriting speed for the several benchmark programs
attained relatively high indices.

It should be noted that over acceleration phenomena
occurred during the solution process for the 9 queen
problem described by the PARLOG program. The reason
was that the internal memory of a single Transputer could
not satisfy the requirements for solution of the 9 queen
problem, which increased the dynamic recovery and
reallocation operations for much of the memory space. In
the multiprocessor system composed of 16 Transputers,
because the computing scale for each of the subtasks was
relatively small, the memory space utilization problem
was alleviated, which avoided additional overhead due to
large amounts of garbage space recovery and reallocation,
which in turn led to the occurrence of over acceleration
phenomena. The over speedup ratio On - (17.662/16)-1 -
0.102. In addition, because the solution process for the
queen problem involved a large amount of frequent
transmission of dynamic data structures, the actual
speedup of the program when operating in the PAM/
TGR was substantially poorer than the ideal speedup

ratio. The results of research by Augustsson and Johnson,
et al. show that the actual speedup ratio in a parallel
system with a processor scale of 15 to 20 PEs is generally
between 5 and 11. The results of our research indicate
that the actual speedup ratio of the typical programs in
the PAM/TGR (16 PEs) was generally between 6.38 and
15.57. The 9 queen program for the parallel logic pro-
gram PARLOG was an exception in that it involved over
acceleration with a speedup ratio of 18.22. In addition,
we have listed below the results of tests of an actual
example of a logical language PARLOG table append
program to test whether or not there is a serious ill
speedup ratio in the parallel system, as shown in Table 2
and Figure 3. ,

• Speedt

16

12

dup

##%.*¥> 1
as*» ft*

Tl I I I —T

■j>

0 4 8 12 16 PEs
Figure 3. Acceleration Curves for the Append Program

Run On the PAM/TGR
Key: 1. Ideal speedup ratio for parallel programs; 2. Ideal
speedup ratio for sequential programs

Table 2(a). Execution Time for the Append Program Run On the PAM/TGR
Benchmark program Execution time

Ti (seconds) T2 (seconds) T4 (seconds) T8 (seconds) T16 (seconds)

append(50,100) 0.0454 0.0529 0.0537 0.0592 0.0532

append(100,200) 0.2828 0.3272 0.3892 0.3938 0.4041

From the definition In - 1 - Sn we can derive the following table:

Table 2(b). Ill Speedup Ratio for the Append Program Run On the PAM/TGR
Benchmark program In

12 I4 18 116

append(50,100) 0.142 0.115 0.233 0.147

append(100,200) 0.136 0.273 0.282 0.300

Figure 3 and Table 2(b) show that the append program in
the PAM/TGR basically maintains its sequential com-
puting efficiency, which is an indication that the PAM/
TGR has a very small negative role in sequential pro-
gram execution. It also illustrates that the optimized

compiler in the PAM/TGR is capable of effectively
recognizing parallelism and generating optimized
abstract machine instructions based on the inherent
characteristics (computing granularity and data interre-
latedness restrictions) of the program.

JPRS-CST-92-020
28 October 1992

V. Comparison With the Performance of Similar
Systems in Foreign Countries and Conclusions

Parallel multiprocessor systems are now being widely
used in all applications realms and their scalable pro-
cessor scale, high memory bandwidth, and high com-
munication bandwidth all substantially improve the
performance of parallel multiprocessor systems. Nev-
erthelessthe network delays caused by cooperation
among processors and the resource competition
problem still exist. We gave full consideration to these

problems in developing the PAM/TGR and adopted a
variety of optimization technologies including devel-
opment of coarse granularity for conservative paral-
lelism, partial scheduling analysis during compiling,
and so on[7,8,ul to enable a substantial improvement in
the performance of the PAM/TGR. To further test the
performance of the PAM/TGR system, we made com-
parisons of the PAM/TGR system with similar systems
internationally based on typical programs. The results
of the comparisons are shown in Table 5.

Table 5. Comparison of the Performance of Several Benchmark Programs Run On the PAM/TGR With the Performance
of Similar Systems in Foreign Countries

Benchmark program System name

Alfalfa Buckwheat APEX K-LEAF PAM/TGR

Hardware environment

17Intel 80286 (hyper-
cnbe)

12NS32032 Encore
Mnltlmax

20 Sequent Balance
21000

16X800 16T800

pfacO.100) 1.90s 0.29s(F) - - 0.058s(F)
nqueen(8) 7.50s(F) 2.05s(F) - - 1.473s(F)
qsort(200) 9.00s(F) 2.35s(F) - ■ 0.320s(F)
tak(18,12,6) - - 7.20s(L) - 2.710s(L)
hanoi(lS) - - 6.47s(L) ■ 2.287s(L)
fib(29) - - - 7.750s(F) 3.29s(F)
nqueen(8) - - - 3.080s(L) 2.72 ls(L)
nqueen(9) - - - 13.937s(L) 10.378s(L)
Note: F: represents a functional program, L represents a logic program, time units are in seconds.

Table 5 [tables 3 and 4 omitted in original text] shows
that the PAM/TGR system performance is very good. It
can support highly efficient execution of functional
language (ML) programs and parallel logic language
(PARLOG) programs and its execution speed is signifi-
cantly superior to similar systems in foreign countries.
The Parallel Military Information Processing System
and cryptographic system developed on the PAM/TGR
by the Third Department of the [PLA] General Staff
Computing Central Station show that the PAM/TGR
system has definite applicability. It has a friendly user
interface and convenient program debugging. Our fur-
ther research work will adopt an even more advanced
processor chip (such as the Transputer T9000 chip) and
more advanced network communication technology,
such as the Wormhole pathfinder technology. The adop-
tion of SVM technology on this foundation to construct
a new type of shared-distributed memory (SDM) system
will effectively reduce network delays and utilization of
processor resources, which will further improve the
performance of the parallel abstract graph rewriting
machine PAM/TGR.

References

[1] L. Augustsson, Compiling Lazy Functional Language
Part II, Ph.D. Thesis, Department of Computer Science,
Chalmers University, Sweden.

[2] P. G. Bosco, C. Cecchi, and C. Moiso, An Extension
of WAM for K-LEAF: A WAM Based Compilation of
Conditional Narrowing, in Proceedings of the 6th Con-
ference on Logic Programming, October 1989 pp 318-
333.

[3] B. S. David, Architecture-Independent Parallel Com-
putation, IEEE Computer, Vol 23, No 12, December
1990 pp 38-50.

[4] J. Fairbairn, TIM-A Simple Lazy Abstract Machine
To Execute Supercombinator, in Proceedings of the IFIP
Conference on Functional Program Languages and Com-
piling Architecture, Springer Verlag LNCS 274, pp 34-
45.

[5] T. Johnsson, Parallel Graph Reduction With the <v,
G>-Machine, in Proceedings of Functional Program
Languages and Compiling Architecture, 1989 pp 202-
213.

[6] X. M. Tian, D. X. Wang, M. M. Shen, and W. M.
Zheng, An Efficient Compiling Implementation of CIL
Rewriting Language on Multiprocessor System, Tech-
nical Report, Qinghua University, October 1991.

[7] X. M. Tian, D. X. Wang, M. M. Shen, and W. M.
Zheng, A Practical Eager- Lazy Control Method for

JPRS-CST-92-020
28 October 1992

Dynamic Deriving Parallel Tasks, accepted by Journal of
Software, 29 November 1991, China.

[8] X. M. Tian, D. X. Wang, M. M. Shen, and W. M.
Zheng, The Compile-Time Partial Scheduling Strategies
for Optimizing Granularity of Parallel Graph Rewriting,
accepted by Journal of Computer Science and Tech-
nology, February 1992.

[9] X. M. Tian, D. X. Wang, M. M. Shen, and W. M.
Zheng, The Parallel Graph Rewriting Abstract Machine
and Its Efficient Execution Mechanism, in Proceedings
of the 1992 National Intelligent Information Technical
Conference, April 1992.

[10] X. M. Tian, D. X. Wang, M. M. Shen, W. M. Zheng,
and Dongchan Wen, An Optimized Parallel Compiler
for Executing Declarative Languages of Transputer
Array, in Proceedings of 15th Occam/Transputer Inter-
national Conference, 12 to 15 April, 1992.

[11] X. M. Tian et al., Parallel Graph Rewriting Abstract
Machine and Its CIL Compile-System, Technical Report
863-306-101 (3), Qinghua University, May 1992.

[12] D. X. Wang, Specification of CIL, Technical
Report, Department of Computer Science and Tech-
nology, Qinghua University, Beijing, China, January
1989.

[13] D. X. Wang, a High-Level Compiling Implementa-
tion of PARLOG Based on Extended Graph Rewriting,
in Proceedings of Tools for Artificial Intelligence 90,
Washington, D. C, November 1990.

[14] D. X. Wang, Parallel Graph Reduction Intelligent
Workstation, Research Report 863-306-101 (1), Qin-
ghua University, May 1992.

"Additional authors of this article were Zheng Weimin
[6774 0251 3046], Wen Dongchan [3306 0392 1292],
and Xiong Jianxin [3574 1696 2450]. This research
project was funded by the State 863 High Technology
Project 863- 306-101 and the State Higher Education
Ph.D. Disciplinary Focus Special Topic Scientific
Research Fund 0249136.

Software Development for 980-STAR Systolic
Array Computer System
92FE0867A Beijing JISUANJI YANJIU YU FAZHAN
[COMPUTER RESEARCH AND DEVELOPMENT]
in Chinese Vol 29, No 2, Feb 92 pp 58-62

[Article by Liu Risheng" [0491 2480 0581] of the China
State Shipbuilding Corporation's Wuhan Institute 709,
Wuhan: "Software Development for the 980-STAR Sys-
tolic Computer System" [see early brief report in JPRS-
CST-90-012, 18 Apr 90 p 16]; MS received Jan 91]

[Excerpts] Abstract: This article describes the software
functions, architecture, and user interface of China's
first Systolic Computer System and concludes by

pointing out the direction of further research in the
future on this system software, [passage omitted]

I. Overview

The rapid development of modern science and tech-
nology continually require the appearance of processors
with faster speeds. The systolic technology proposed by
professor H. T. Kong at Carnegie-Mellon University in
the United States in 1978 appeared in this kind of
situation.

Systolic arrays are usually expressed as arrays composed
of a number of processing elements (PEs) with identical
logic functions; the PEs are connected locally in a simple
regular communication geometry. This type of architec-
ture is particularly well-suited to the implementation of
VLSI [very large-scale integration].

Systolic arrays are suitable for algorithms with relatively
good regularity like image processing, signal processing,
matrix operations, etc. Because these algorithms often
take up large amounts of time for computing tasks, the
use of systolic arrays can greatly increase the overall
speed of computing tasks. This characteristic of systolic
technology makes it especially suitable for military appli-
cations, and it has attracted the attention of the military
in the United States as a result. In 1983, the United
States Department of Defense listed systolic technology
as one of the basic technological projects in its "Strategic
Computing Program."

The fixed connections among the component elements
of systolic arrays limit the scope of their applications,
and as a result people have used program control to
change the communication geometry among the ele-
ments. This type of array is called a programmable array.
A typical example is the Warp Computer developed by
Carnegie-Mellon University in 1986. It is a linear array
composed of 10 Cells and its 32-bit speed can reach 100
MFLOPS [million floating-point operations per second].
Another representative is the Matrix-1 Computer devel-
oped by the Saxpy Company in the United States in
1987. It is a linear array composed of 32 elements and its
32-bit speed can reach 1,000 MFLOPS.

China's first systolic computer is the 980-STAR Com-
puter successfully developed by the China State Ship-
building Corporation's Wuhan Institute 709 in July
1989. It is a two-dimensional programmable array com-
posed of 4 X 4 elements and its fixed-point 8-bit com-
puting speed can reach 160 MIPS.

Because systolic arrays are only suitable for several
relatively regular computations, they are not suited to
doing other computations or to system management and
software development, and other work. Thus, these
arrays often serve as a auxiliary machines connected to a
common computer. Users use the systolic array proces-
sors via the host machine, and the host machine is
responsible for developing applied software, system
management, and normal operations for the array pro-
cessors. Moreover, an appropriate part of the array

JPRS-CST-92-020
28 October 1992

■MM«! |MEMl| |MEM2J |MEM3|

< CROSSBAR \
 1 » I M M M S

Multichannel
4\

4X4CELL J

DBI
AGU
0-3

IOU
OBO ecu o

Adaptor }
INTEL

SYSTEM
310 z

Image
Subsystem

Figure 1. 980-STAR Hardware Structure

processor operations are turned over to the systolic array
processors. For example, Warp computers use a number
of SUN-3 workstations connected via a network (TCP/
IP) as host computers. The Matrix-1 uses a special
high-speed channel for connection to a VAX machine.
The host machine for the 980-STAR uses an Intel
Corporation System 310 microcomputer and the oper-
ating system is iRMX86.

Below are described the primary characteristics of the
system software for a computer system composed of a
host machine and array processors.

II. Architecture

The hardware structure of the overall system is illus-
trated in Figure 1. The host machine is connected to the
array processor system via a Multichannel. In the array
processor portion, besides a 4 X 4 systolic array, there is
also an interface machine and four memories MEMO-
MEMS. The CROSSBAR is the hub for data exchange

among the three. The interface machine includes AGU,
IOU, and CCU. AGU0-AGU3 are, respectively, the
addresses generated for MEM0-MEM3. The IOU passes
through the data buffer input DBI and data buffer output
DBO to exchange data with the host computer, and it
can exchange image data with the graphic subsystem.
The CCU is the controlling unit for the array processors.
It interprets the instructions from the host machine and
controls the coordinated operation of the other pro-
cessing units. The 4 X 4 Cell executes the actual systolic
instructions. Thus, the array processor area has a total of
22 processors. In the host machine area, besides the host
computer there is also an image subsystem. After digiti-
zation of the image that has been photographed by the
camera, it transmits it into the DBI, and after the image
is processed by the array processors it can be transmitted
into the DBO. The image subsystem then extracts the
data from the DBO and transmits it to the display. Of
course, the host computer can also extract the resulting
data from the DBO.

a,tI#Mttf h.**

A VA ***■

e.

g. ««=

£xfa
7/ &*ta

Mrfrer

h. *£«<

I od river

IOU

DBI/DBO
I

FI

EXEC

[pd river

CCU

IPM

FAO

AGUO

MEMO

FC15

CELL1S

►ffWtt*» i.
Figure 2. System Software Structure

Key: a. Original system software; b. Level; c. Application programs, utility programs; d. Host library functions; e. Task
management; f. Software; g. Hardware; h. Host machine; i. Array machine system

10 JPRS-CST-92-020
28 October 1992

The system software of the overall system is distributed
in one host machine and 22 processors, mainly in the
host computer. The primary functions of the system
software are: 1) Manage the operation and communica-
tion of the processors; 2) Provide a user interface to the
host machine and support the running of applications
software; 3) Provide a user development tools environ-
ment in the host machine.

The system software in the array processors is a small
amount of microcode implemented in the hardware. In
the host machine, to make use of the original operating
system and software tools, the original system must be
expanded. The structure of the overall system software is
illustrated in Figure 2.

The software of the host computer is divided into four
levels. The lowest level (hdriver) is the communications
program targeted at the Multichannel. The second level is
task management, including memory allocation in the
array processors. The third level is the host library func-
tions. They are the interface between user applications
programs and the array processors. They convert user
requests into the data required by the various processing
units in the array computer system, and then transmit
diem in a fixed format to the CCU. The data in this fixed
format is called the Function Control Block (FCB). The
highest level is the user applications program and the
software tools to support array computer software devel-
opment.

The software of the array computer system is divided into
three levels which correspond, respectively, to the three
lowest levels of the host machine. Because there is a
master-slave relationship between the host computer and
array processors, the host computer is the main controlling
area, so there is no fourth level for the software in the array
processor area. At the lowest level, the IOdriver in the IOU
and the IPdriver in the CCU are responsible for transmit-
ting data to the hdriver in the host machine. At the second
level, the EXEC in the CCU separate out the FCB from the
data that are transmitted in and process the data itself,
interpret the meaning of each field in the FCB, and allocate
the third level library functions in each processor to
complete the work for each one. These library functions
are: FI running in the CCU, FA0-FA3 running, respec-
tively, in AGU0-AGU3, and FC0-FC15 running, respec-
tively, in CELLO-CELLI 5. Thus, each host function call in
the host computer area is served by 21 library functions in
the array processor area.

The host library functions and array processor functions
do not belong entirely to the system software. They are
related to actual applications. Thus, the host library func-
tions must be connected to the applications programs prior
to running, while the array processor library functions
must also be stored as needed in the file and then loaded
into each of the processors in the array computer.

When an applications program is running in the host
machine, it calls host library functions and the latter
convert user requirements into FCB. The FCB move

downward level-by-level and at the lowest level pass
along hdriver-Jodriver—»Ipdriver and are then trans-
mitted to the EXEC which after interpreting them
decomposes them and transmits each piece of data into
each library function at the three levels for execution.

III. User Interface

Users have two utilization modes for the 980-STAR: the
instruction mode and the programming mode. By using
the former mode, users can type in instructions and call
library functions at the terminal keyboard and instruct the
array processors to execute them. In the latter mode, users
call the host library functions in their applications pro-
grams to request that the array processors complete the
specified functions. There are also two processing modes
for each of the utilization modes, the line-by-line pro-
cessing mode and the batch processing mode. When using
the line-by-line processing mode, the array processors
must return control to the host machine when calling each
corresponding host library function to execute each line
and wait until the next function is called. In the batch
processing mode, however, the user first writes a series of
host library function calls into the file. These function call
statements can use key words to construct various types of
control structures like cyclic statements, conditional state-
ments, and so on. Then users can use a special instruction
(Ksubmit) to convert the library functions called in this file
into a batch of FCB and they form the corresponding FCB
chains according to the syntax in the file. The FCB chains
are transferred together to the EXEC in the CCU for
interpretation and execution. This file is called a batch
processing file. The illustration below shows the four
utilization modes for the 980-STAR:

Instruction mode

Utilization mode

Programming mode

Line-by-line
processing mode

Batch processing
mode

Line-by-line
processing mode

Batch processing
mode

The instruction mode is easy to use and convenient for
program debugging. The programming mode supports
program operation. The batch processing mode is easy
for users to use and aids in rapid program structuring
and debugging. Because the programs in the batch pro-
cessing files are in the form of the original programs,
they do not have to be compiled, so they are very easy to
compose and revise. Particularly important is that the
batch processing mode is especially suited to real-time
off-line applications. In such situations, the array pro-
cessors can be independent of the host machines after
they receive the FCB chains transmitted from the host
computer and carry out direct data transmission with

JPRS-CST-92-020
28 October 1992

11

peripheral real-time equipment, which greatly acceler-
ates the response of the array processors to peripheral

[passage omitted]

IV. Further Work

The 980-STAR systolic computer system described
above passed examination and acceptance by the
National Defense Science, Technology, and Industry
Commission in July 1989 and has been operating in an
excellent manner in machines to date. This is a principle
prototype that is distant from application and requires
much more work. We must continue working in the
following areas in relation to the system software:

A. Software development tools

This system has already provided several host library
functions and the corresponding array processor func-
tions regarding image and signal processing and matrix
operations. This is not enough for different types of
applications. Although the 980-STAR is a programmable
systolic computer, it is still hard for normal users to
compile new library functions, so users must be provided
with several software development tools for them to
conveniently generate the library functions they require.
Some work is now being done in this area.

B. Convenient applications interfaces

The user interfaces now provided by the system are
mainly targeted at programmers and several special
interfaces targeted at certain specially determined fields
must be provided.

C. Support for various types of operating systems and
high-level languages

At present this system can only run in an iRMX86
operating system and utilize PL/M-86 high-level language.

D. Support for even higher-grade host computers to take
full advantage of array processor capacity

E. Improve system software operating efficiency

Thanks: The author would like to offer his gratitude for
the warm support and close cooperation received from
comrade He Guo [0149 0948] and comrade Kang Hong-
sheng [1660 1347 3932] in the process of developing
software for the 980-STAR system. Program implemen-
tation was mainly done by Wu Hua [0702 2901] and
other comrades.
MLiu Risheng was born in 1944 and graduated from
China University of Science and Technology in 1967. He
received a Master's degree from the Chinese Academy of
Sciences Computing Institute in December 1981 and is a
senior engineer. He is mainly involved in research on
operating systems, UNIX systems, and real-time control
systems. The achievements described in this article

received a first-place S&T progress award from the
China State Shipbuilding Corporation in 1990.

References

[1] M. Annarotone et al., Warp Architecture: From
Prototype to Production, AFIPS Conference Proceed-
ings, Vol 56, 1987 pp 133-140.

[2] B. Bruegge et al., The Warp Programming Environ-
ment, ibid., pp 144-148.

[3] D. E. Fourlser et al., The Saxpy Matrix-1: A General-
Purpose Systolic Computer, IEEE Computer, July 1987
pp 35-43.

Parallel Processing System Using RISC
Technology
92FE0867B Beijing JISUANJI YANJIU YU FAZHAN
[COMPUTER RESEARCH AND DEVELOPMENT]
in Chinese Vol 29, No 5, May 92 pp 50-56

[Article by Chen Renfu [7115 0083 3940] (deceased) and
Xu Youhui [6079 0147 6540]1*1 of the East China
Institute of Computing Technology, Jiading, Shanghai:
"Parallel Processing System Using RISC Technology";
MS received Aug 90]

[Excerpts] Abstract: This article discusses a parallel
processing system constructed from a RISC [reduced
instruction set computing]-chip computer and intercon-
nection modes, and on this basis focuses on implemen-
tation of system control, management, communication,
and so on under a XENIX environment. It concludes
with an evaluation of the performance of this system
using standard testing programs and a high-order matrix
computation program.

I. Introduction

[passage omitted]

The sections below describe the architecture of the parallel
processing system (abbreviated as the ECI-PPS [East
China Institute-Parallel Processing System]), its software
application environment, an evaluation of overall system
performance, and some of its characteristics.

II. RISC T800 Architecture

Before introducing the architecture of the ECI-PPS, we
must first provide a brief description of the T800 as an
important part of this system.

The T800 is a RISC processor that is being promoted by
the INMOS Company. In this system we use a 20 MHz
chip With fixed point operating speed of 10 MIPS and
floating point operating speed of 1.5 MFLOPS. Figure 1
[not reproduced] illustrates the components of the archi-
tecture.

The system service units perform reset and total control
functions for all units on the chip. The 64-bit floating
point unit and 32-bit processor are used to do floating

12 JPRS-CST-92-020
28 October 1992

point operations and various other types of operations.
The FPU can execute single and dual-precision floating
point arithmetic and it conforms to ANSI-IEEE 754-
1985 standards. Its external memory interface can access
4GB of address space and there is 4KB of unified
addressing space on the chip. The interconnection server
is the part provided by this chip that is used for inter-
connection among the controller chips. The parallel
processing system constructed from the T800 can be
used in scientific/engineering computations, graphics/
image processing, real-time processing, and other
realms.

III. ECI-PPS Architecture

A. ECI-PPS design principles

The design principles for the ECI-PPS employ a building
block-type modularized idea that uses additional proces-
sors on the host computer to implement parallel processing
functions for the system as a whole. The main task of the
host machine is responsibility for management of the
overall parallel system, whereas key technologies for the
ECI-PPS are composed of the processor array in the
parallel processing system that is actually responsible for
executing user jobs, effectively organizing multi-element
processors into an organic processing array, and coordi-
nating the completion of user jobs (including job alloca-
tion, scheduling, etc.), and the interface technology
between the processor array and host machine.

We mentioned in the previous section that the T800 chip
has four interconnection channels and that each inter-
connection channel has a pair of input/output channels.
These channels are used for interconnections among
chips, so this type of chip can be used to put together an
architecture on an arbitrary scale. The ECI-PPS uses
exactly this type of chip and there is substantial flexi-
bility in the combinations of architectures. Moreover,
the system composed of INMOS Company chips pro-
vides relatively complete tools such as parallel language
compilers and some debugging tools.

Each processor in the system should have its own local
memory because when it is doing large numbers of numer-
ical computations, stubborn use of a shared memory
arrangement will inevitably lead to problems like an
increase in processing units, bus overburdening, and so on.

The parallel processing array has one processor that serves
as a root processor. Its main responsibility is communica-
tion between the processor array and the host computer.
All of the data in the processor array must go through this
root processor to communicate with the host machine. The
reasons are one, that it reduces the burden on the bus, and
two, that it reduces control.

The basic interconnection arrangement for the processor
array is a pipelining interconnection mode that utilizes
one pair of input/output channels. If all three of the other
channels have a completely hard-wired interconnection,
the topological architecture is fixed and is not flexible

enough. Thus, the adoption of a basic pipelining archi-
tecture with an added interconnection network enables
the production of this type of topological architecture.

Based on present applications requirements and devel-
opment trends, when providing a software environment
the operating system of the UNIX series should be the
primary environment. Here, we chose the UNIX variant
operating system XENIX System V, but in taking into
consideration the large number of DOS users at the
present time we also provided a DOS environment for
the parallel processing system.

B. ECI-PPS architecture

The ECI-PPS is composed of a host computer, a pro-
cessor array, and an interconnection network. The archi-
tecture is illustrated in Figure 2.

In the diagram, the host computer is the controller
machine for the overall parallel processing system and it
manages user input/output operations like printing,
screen output, keyboard input, etc., and it carries out
initiation, control, and diagnostic operations for the
processor array and interconnection network. It is also
responsible for communication between the processor
array and peripheral devices.

The interconnection network is a 32-circuit crossbar
switch with 32 input channels and 32 output channels.
Each pair of input/output channels gives each processor
bidirectional communication capabilities, so this intercon-
nection network can be connected to a maximum of 32
processors. Moreover, programming software for control-
ling this interconnection network system can be used to
form these processors into a parallel processing system
with a variety of topological architectures such as an array
type or tree structure, cube Or hypercube structure, and so
on.

The function of the root processor is to be responsible for
advance processing of user jobs such as editing, com-
piling, connecting, and so on, and it carries out alloca-
tion, dispatching, and control of the other processors in
the system. It is also the channel for data transmission
between the processor array and the host machine. This
point can be seen from the architecture. Moreover, the
root processor also participates in parallel processing of
jobs.

Each processor in the processor array (including the root
processor) uses a 20 MHz T800 processor and has 2MB
of local memory (LM). The function of this local
memory is to access the program codes and data that
must be executed by this processor system.

One can see from the architecture that the parallel
processing system uses a loosely-coupled and point-
to-point communication structure. The advantage of
point-to-point communication is that it permits the
addition of an unlimited number of processors without
the possibility of problems appearing like those in a
similar tightly-coupled and bus architecture. The basic

JPRS-CST-92-020
28 October 1992

13

Figure 2. ECI-PPS Architecture

Key: a. User interface; b. Host computer; c. Peripheral devices; d. Bus; e. Root processor; f. Processor 1; g. Processor
N; h. Local memory 0; i. Local memory 1; j. Local memory N; k. Interconnection network

architecture of the parallel processing system is a pipe-
lining arrangement, but reflective alterations can be
made via the interconnection network according to job
processing requirements and architectures.

IV. Software Environment

Control of normal system operation involves the opera-
tion of system control modules. Before describing the
working principles of the system control modules, we
want to discuss the functions of the overall system
control modules, the communication protocol for the
parallel processing system and host computer, and the
design of a device actuation program under XENIX.

A. Functional requirements

Besides the computing functions of the processing array
itself, it must also control the required services provided

by the software. These system services mainly involve
system services, file processing, operating system con-
trol, and other functions.

1. System service functions: the requirements include
system initiation and termination, providing a clock,
environment changes, and so on.

2. File processing functions: the requirements including
opening, closing, and reading and writing files, informa-
tion transmission, etc.

3. Operating system control functions: the requirements
include interrupt processing, system memory reading
and writing, input/output port accessing, etc.

B. Communication protocol

In the overall system, there are two types of communi-
cation. One type is communication between the host
machine and the processing array and the other is

14 JPRS-CST-92-020
28 October 1992

communication between each of the processors in the
processing array. Their formats and communication
modes are different.

1. Communication between the host computer and the
processing array

Functions to be executed —! to. Al? from A2

to, Al —Execution of instruction

from. A2 — Resulting value

In the format, ! is an instruction execution request
received through the channel by the host machine from
the processor array and then processed according to the
corresponding requirement. ? is the result of the execu-
tion transmitted to the processor array through the
channel after the host machine completes the instruc-
tion.

2. Communication among the various processors in the
parallel processing array

Along with providing parallel languages, the INMOS
Company also provides users with an intercommunica-
tion process among the processors. Its format is:

CHAN-IN(variable, input channel number)

CHAN-OUT(variable, input channel number)

CHAN-IN(indicates that the variable is trans-
mitted into the input channel

CHAN-OUT(indicates the data received from
the output channel.

There is mutual correspondence among them and com-
munication only occurs when the input path and output
path are in the same states. Otherwise, it remains in a
wait state.

a. npmft

C. Design of parallel processing system hardware drive
programs ander a XENIX operating system environment

Because control and utilization of devices by the UNIX
series of operating systems is different from the DOS
operating system, it cannot directly use device ports in
applications programs for reading and writing like DOS
can. It requires that when an applications program uses
devices, it must be carried out according to the file mode
being utilized, and the drive program design must provide
the applications program with several interfaces such as
file modes, which mainly include opening, closing, reading
and writing, other control, and so on, after which it
restructures the operating system kernel. Implementation
of this process as a whole is more difficult that under DOS.
Below, we will only plot the working principles and design
of a drive program under XENIX and will not provide
additional descriptions under DOS.

1. Working principles of the drive program

As shown in Figure 3, when an applications program
uses devices it can enter system calls (such as field-open
("device name", opening mode)) into the operating
system kernel and the kernel then enters the corre-
sponding drive program codes according to the param-
eter called. In this way, the drive codes control the
devices according to requirements.

2. Drive program design

Based on the requirements of the operating system and
the actual characteristics of the parallel processing
system hardware, we designed a drive program for it that
contains six processes. They are opening, closing,
reading, writing, initialization, and communication pro-
cesses. Opening and closing are the necessary prepara-
tory work requested of the operating system for the
reading, writing, and other processes. The reading and
writing processes are simply data reception and trans-
mission. These two processes also include detecting and
processing device error states, while the initialization
and communication visual applications programs use

"b. |" s imm f

XE N I X
tofr

c.

d. -*•

«a» m^im
h.

Figure 3. Working Principles of Drive Program Under a XENK Environment
Key: a. User program; b. System calls; c. XENIX kernel; d. Driver and kernel interface; e. Drive codes; f. User space;
g. Kernel space; h. Peripheral devices * _"

JPRS-CST-92-020
28 October 1992

15

the actual conditions of the device for selection and
utilization, and they complete several initializations,
port selections, and so on. These processes must use the
special tools provided by the operating system to com-
pile them and connect into the kernel.

D. Working principles of the system control module

The system control module of the parallel processing
system serves as a sub- module of the operating system
that runs together with the operating system in the host
machine, coordinates and manages the overall parallel
processing system, and facilitates transplantation of the
system control module into other operating system envi-
ronments (such as the DOS environment). It integrates
processing array management, equipment request pro-
cessing, communication coordination, management task
dispatching, and other functions in this module, whereas
the operating system manages system software resources
(such as file systems, etc.) and hardware resources (such
as standard input/output devices* etc.). This turns the
most direct control and management tasks over to the
system control module for completion. Below, we focus
on a description of the flow process for the operation of
this module (illustrated in Figure 4).

a. <j— «a«*««»«:

1
b. «= ttJMittM*+

ft**MXKE«Ri*

c.*2

d-*« j.

k.

t. sftxtt* L h. *™«** f

*3M i.

saw«*«*
1

g-

es*.
1. m.

Figure 4. Parallel Processing System Control Module
Flow Chart

Key: a. Frame 1; b. Frame 2; c. Frame 3; d. Frame 4; e.
Frame 5; f. Processor array initialization; g. Self-
selection of three categories of codes that require pro-
cessing from the parallel processing system; h. Inquire if
completed or not; i. Not completed; j. Control and
receive service requests emitted by processing array; k.
Carry out processing based on the corresponding instruc-
tions and transmit results to processor array; 1. Com-
pleted; m. Output

Frame 1: The system control module presets the working
state of the processor system and places it into a prepa-
ration state for receiving tasks such as processing array
reset, error detection, etc.

Frame 2: The system control module transmits three
types of codes (source codes, intermediate codes, object
codes) to the processor array. These codes are generated,
respectively, by the editor, the compiler on the root
processor, and the chain linker.

Frames 3 and 4: The root processor is used to control the
processor array (because all of the processors in the
processor array must pass through the root processor
before they can communicate with the host machine),
inquire of its execution state, receive requests for data
transmission, etc.

Frame 5: Processing of service requests from the pro-
cessor array, such as file reading and writing and other
related operating system system call requests, and feed-
back of processing results to the processor array.

V. Parallel Processing System Software and Hardware
Characteristics

A. Primary characteristics of the software environment:

1. The ECI-PPS can run under both the DOS and
XENIX environments, which has expanded its scope of
suitability.

2. It provides serial C, FORTRAN, and PASCAL and
parallel C, FORTRAN, OCCAM, and other language
operating environments under DOS and XENIX.

3. Source programs under DOS can run without further
modification under XENIX, and the same holds true for
the opposite case. This makes program design very
convenient.

B. Primary characteristics of the hardware system:

Modularized architecture, and each processor system in
the ECI-PPS employs modular ideas in the design.

The system-level design leaves expansion and restruc-
turing capabilities.

1. The changeable topological architecture and intercon-
nection network software controllability permit corre-
sponding changes to be made in this system according to
different situations and different algorithm structures.

2. A loosely-coupled and point-to-point architecture.
This can reduce the overhead arising from communica-
tion and competition.

3. RISC technology applications.

VI. Performance Evaluation

To make a quantitative description of the performance
of the parallel processing system as a whole, we selected
a testing program from the Gould Minisupercomputer
Company and a large number of data computation
programs, and ran user jobs on this system and ran
identical jobs on other types of computers to compare
and analyze the amount of time required.

16 JPRS-CST-92-020
28 October 1992

A. List of testing programs

1. WHETSTONE: used to test floating point operations.

2. DHRYSTONE: used to test system input/output per-
formance.

3. High-order matrix operations.

B. Performance evaluation
When conducting the performance evaluation, we
mainly used an EC-386 developed by the East China
Computing Technology Institute (25MHz clock, with
CACHE) and representative computers from foreign
countries as models for comparison with the parallel
processing system. Tables 1, 2, and 3 list the results of
file performance comparisons.

Table 1. WHETSTONE Program Test Table (units: K/S)
TjftMamimtauUwaaz»aimmftnmmmt Single predsioa Daal precision

EC-386 25 MHz XENIX 20 21

EC-386 25 MHz DOS 72 85

EC-386 25 MHz (+387) DOS 679 -

Processor array (One T800) 1587 1639

Processor array (Two T800) 2646 2703

Processor array (Four T800) 4831 4878

Table 2. DHRYSTONE Test Table (units: DK/S)
Typeorcoaspnter Master dock speed Oprialiug ajateai Pcribfance

VAX-11/750 - UNDC4.2 877

IBM 4341 16.67 MHz UTS 5.0 3685

SUN/75 16.67 MHz SUN 4.2 3571

EC-386 25 MHz (CACHE) XENKV 6250

Parallel processing system (One
T800)

20MHz TDS 4410

VAX 8600 - UNDC4.3 7088

VAX 8600 - VMS 7142

Table 3. High-Order Matrix Sample Operation Comparison (Units: Seconds)
NuAcr of cycles 1* 50 100

EC-386 DOS 48 240 481

EC-386 XENIX 72 361 722

Processor array 1 6 28 55

Processor array 2 3 15 30

Processor array 3 2 12 23

Processor array 4 2 8 15

Note: The 1,2, 3, and 4 after the processor arrays in Table 3 represent, respectively, one, two, three, and four T800 processors.

The ECI-PPS is a highly parallel processing system
composed of four T800 chips (actually, it can be config-
ured with a maximum of 32 processors). Interconnection
among each of the processors is done via program
control using C004 network interconnectors for direct
connection among each of the processors. This intercon-
nection arrangement enables relatively rapid informa-
tion exchange among processors. The performance com-
parisons in Table 1 show that with a single T800, the
operating speed ratio between this system and the EC-
386 is 20:1 and that if the EC-386 is fitted with an 80387,
their speed ratio is 2.4:1. When the system has two
T800s, however, the speed ratio is 4:1. Because DHRYS-
TONE mainly concerns input/output management and

system resource management in the parallel processing
system (with only one T800 operating) is achieved via
the system control module, processing by this system in
this area is somewhat slower. When carrying out large-
scale matrix operations, the parallel processing system
has a higher throughput speed than the EC-386.

VH. Conclusion
Parallel processing technology was proposed quite some
time ago, but it has only developed quickly after very
large-scale integration provided a powerful foundation
for this type of technology. The architecture of the chip
computer series of chips developed by the INMOS

JPRS-CST-92-020
28 October 1992

17

Company has unique functions. It melds the processor,
memory, communication protocol, and peripheral
device functions into an integrated whole. This increases
the working capacity of each chip and they already have
formed internally a set of timing and control signal
sequences and communication chain circuit functions.
They provide an excellent foundation for putting
together mainframes and supercomputers with various
types of topological architectures.

Zou Ling [6760 3781], Zhu Yuqing [2612 5148 3237],
Wang Zhongkang [3769 0112 1660], Li Xingchuan
[2621 S281 2S04], and other comrades also worked on
this project.

[*]Xu Yuhui was bora in 1961 and graduated from the Computer
Department at Shanghai Railroad College in 1982. He received a
Master's degree from the Chinese Academy of Sciences in 1987. He
currently works as an engineer. He is mainly involved in research on
parallel processing, RISC technology, interconnection networks, and so
on.

References

[1] INMOS Limited, "Transputer Development
System", Prentice Hall, 1988.

[2] INMOS Limited, "Transputer Databook", Bath
Press Ltd., Bath, 1988.

[3] INMOS, "Parallel C User Guide", 3L Ltd., 1988.

Mtdtimicroprocessor System AP85
92FE0867C Beijing JISUANJI YANJIU YUFAZHAN
[COMPUTER RESEARCH AND DEVELOPMENT]
in Chinese Vol 29, No 7, Jul 92 pp 10-15

[Article by Zhou Yaorong [0719 5069 2837] and Zhang
Daqing [1728 1129 1987] of the Ministry of Aerospace
Industry Computing Technology Institute, Xi'an: "Mul-
timicroprocessor System 85"; MS received Aug 88]

[Excerpts] Abstract: This article provides a detailed
description of the architecture, working principles, and
software and hardware composition of the AP85 multimi-
croprocessor system and integrates with the implementa-
tion technology of the AP85 system for a discussion of
several problems common to multimicroprocessor sys-
tems. The article concludes with induction and summari-
zation of the AP85 system's applications conditions and
system characteristics, and it offers some proposals for
further improvements in the system.

I. Introduction

Computers have undergone more than 40 years of devel-
opment and their performance has been improved by
many numerical grades. During the development pro-
cess, facing restrictions by hard component technology
and techniques on single processor speed, computer
designers have proposed several technologies for
increasing computing speed. The main ones are pipe-
lining technology, vector flow and shared component

technology, and parallel processing and RISC tech-
nology, which are still rapidly developing. It is not hard
to discover that these technologies exploit and utilize
latent parallelism at different levels, so an ideal com-
puter system can be thought of as one that should be
capable of exploiting parallelism at all processing levels
to concentrate various types of technologies into one
body to obtain ultrahigh computing performance. The
computer architecture that approximates this ideal
model should be led by multimicroprocessor systems.

Since the 1980's, the surging development of VLSI [very
large scale integration] technology has led to the appear-
ance of 32-bit high-performance microprocessors and a
steep decline in hardware prices. These have greatly
spurred R&D on multimicroprocessor systems. To date,
there are at least several dozen types of multimicropro-
cessor systems in the United States, Japan, and countries
of Western Europe. The better known ones include the
iPSC-VX and Butterfly from the United States and the
PAX-64 from Japan, all of which have several dozen
processors installed. All types of facts have proven that
research work on multimicroprocessor systems has now
made the transition from the experimental research stage
to the applied research stage and that research on mul-
timicroprocessor systems has now become a topic with
important development directions.

In the early 1980's, the Ministry of Aerospace Industry
Computing Technology Institute in Xi'an began doing
research on multimicroprocessor systems and felt that a
system composed of several low-cost microprocessors
was an effective way to implement a high-performance
computer capable of meeting the urgent requirements of
many departments within China for high-speed com-
puters, especially aviation departments. In 1985 we
began development of the AP85 multimicroprocessor
system with the anticipated early-90s objective of devel-
oping the AP256 supercomputer with a peak speed at the
100 million instructions per second [MIPS] grade.

II. AP85 Architecture

The AP85 is an experimental loosely-coupled multimi-
croprocessor system. Its goal is to support exploration
and research on multiprocessor architectures, parallel
algorithms, and multiprocessor support software. The
overall system is composed of a host computer, a com-
munication controller, and an array composed of 16
asynchronous microprocessors. The host machine and
communication controller are connected via a high-
speed bus with each microprocessor in the array, which
is also called array element processor interconnection.
Each array element processor is also directly intercon-
nected via a point-to-point channel with its four adjacent
array element processors, forming an FNN (four nearby
node interconnection) (see Figure 1).

18 JPRS-CST-92-020
28 October 1992

*»
tt»#T JSStf

—^. ■ I ml It ■ It

*»§rr

EiS3

Figure 1. AP85 Architecture
Key: a. Printer; b. Disk; c. Channels; d. Array; e. Host computer

The AP85 microprocessor array makes use of the enor-
mous flexibility of FNN two-dimensional network inter-
connection. This interconnection is suitable for direct
mapping of one-dimensional, two-dimensional, ring-
shaped, tree-shaped, multidimensional, and other math-
ematical models. For a multiprocessor system composed
of P nodes and using a certain number of ring-shaped
connections, the average path of the network is P/2. If
converted to two-dimensional network interconnection,
the average path is P1'2. The average path of three-
dimensional network interconnection is 3P1/3/2. Thus,
for a relatively large-scale system composed of 1,000
nodes, the ratio of the average paths for one, two, and
three-dimensional interconnection is 512:32:15. Obvi-
ously, two-dimensional interconnection is far superior to
one-dimensional interconnection, whereas the superi-
ority of three-dimensional interconnection relative to
two-dimensional interconnection is much less. Taking
into consideration the cost and degree of difficulty
involved in interconnection, we feel that two-
dimensional interconnection is a more ideal intercon-
nection mode for medium and small-scale systems.

The AP85 utilizes in-task process one-level parallelism.
It is different from multiple component processors or
vector processors it that it uses local instruction-level
parallelism, which avoids restriction by scalar operations
and the need for high-speed elements and complex logic
structures. Compared to data pipelining processors, the
AP85 uses a moderate-grained data pipelining structure.

Although the degree of parallelism it utilizes is not as
high as data pipelining processors, its simplicity of
control is appropriate for present technical levels.

The AP85 system uses a decentralized memory architec-
ture and has no shared memory. Process synchronization
is achieved automatically by the producer process trans-
mitting data to the consumer process, which eliminates
memory conflicts, complex switching network control,
and a series of other problems related to a shared
memory architecture; Although for a rather small scale
system a multiprocessor system with a distributed
memory architecture can result in substantial losses in
overall system performance arising from the relatively
large communication overhead, in a multiprocessor
system with superhigh performance that is composed of
tens of thousands of nodes the adoption of a decentral-
ized memory architecture would appear to be unavoid-
able, [passage omitted]

rV. System Hardware Description

A. Composition of microprocessor array

The microprocessor array in the AP85 system is com-
posed of 16 completely identical array element micro-
processors. Each array element microprocessor is an
integral microprocessor system composed of the fol-
lowing parts.

JPRS-CST-92-020
28 October 1992

19

1. Intel 8086 microprocessing element and Intel 8087
coprocessor

The Intel 8086 is a 16-bit microprocessor with a 20-bit
address line that gives it a 1MB addressing capability. Its
advanced internal architecture enables it to carry out
16-bit fixed point number arithmetic and logic opera-
tions. The Intel 8087 is a coprocessor used for the special
purpose of processing numerical data operations that is
capable of directly carrying out 32-bit, 64-bit, and 80-bit
floating point operations and 18-bit BCD data opera-
tions. Its floating point format is completely identical to
the IEEE-751 floating point standards used in standard
FORTRAN. At a 5 MHz working frequency, a system
composed of an Intel 8086 + 8087 has a floating point
operation capability of up to 0.5 MFLOPS.

2. Array element microprocessor memory

Each array element microprocessor has its own local
memory that includes 128K of RAM and 48K of ROM.
The ROM is used to access the array element micropro-
cessor support software. With the exception of part of the
RAM being allocated for system use, most of it is space
available for use by users. The RAM is a dual-port memory
that is both the main memory for the array element
microprocessors and capable of host machine reading and
writing. The memory capacity of the array element micro-
processors as a whole can be expanded to 1MB.

3. Intel 8255 parallel interface controller and Intel 8251
serial interface controller

The Intel 8255 parallel interface controller is used to
control communication among adjacent array element
microprocessors. Each array element microprocessor is
configured with four channels that are connected, respec-
tively, to the four surrounding array element microproces-
sors. The serial interface controller is mainly used to
prepare for external connection to terminals to facilitate
debugging, and it can be connected to external input/
output devices.

4. Other control components and logic

Besides the components described above, the array element
microprocessors also have interrupt controllers, timing
timers, clock generators, RAM dual-port control circuits,
and other components and logic-aided construct systems to
ensure control of the array element microprocessors by the
host computer and carry out communication functions
between the host machine and the array element micropro-
cessors and among the array element microprocessors.

B. Composition of the host computer

The host computer in the AP85 system is made by
expanding an IBM PC-XT microcomputer. The
expanded portion includes an array drive board and an
interrupt control board. The function of the array drive
board is to provide sufficient drive current for normal
operation of the array microprocessors while the func-
tion of the interrupt control board is to load and mask

the interrupt signals sent by the microprocessor array to
the host machine to assist the host machine in managing
implementation of the microprocessor array.

C. Communication controller

The communication controller CU is the hub linking the
host computer and the microprocessor array. It is com-
posed of an Intel 8089 I/O processor with added control
logic. The Intel 8089 is a coprocessor used especially for
input/output processing. It is connected in a remote
fashion to the host computer Intel 8088 CPU in this
system. It treats the array microprocessors as peripherals
and utilizes its high-speed DMA transmission functions
to carry out data transmission from array element micro-
processor to array element microprocessor, from array
element microprocessors to the host computer, and from
the host computer to the array element microprocessors.
The broadcast transmission functions from the host
computer to the microprocessor array and from the array
element microprocessors to each array element micro-
processor gives this system an extremely high transmis-
sion efficiency. The Intel 8089 can achieve arbitrary
connection of 8-bit or 16-bit peripherals with 8-bit or
16-bit processor busses. This permits connection of the
Intel 8088 which has an external data bus width of 8 bits
with the Intel 8086 which has a data bus width of 16 bits.

D. Interconnection channels

1. Local interconnection channels. Each array element
microprocessor has four parallel 8-bit input ports and
four parallel 8-bit output ports that form dedicated
input/output channels with the four adjacent array ele-
ment microprocessors. The local interconnection chan-
nels are controlled only by the array element micropro-
cessors and are used for random data communication
with the adjacent array element microprocessors.

2. Global system bus: This is a 16-bit parallel time-
division multiplexing bus that can provide the array
element microprocessors in the array with point-to-point
communication and broadcast communication. The
global system bus connects the host computer to all the
array element microprocessors. The host machine can
use the global bus to load programs and data into the
array element microprocessors, and it can extract the
results from the array element microprocessors.

V. System Software Architecture

Figure 2 shows the model of levels in the AP85 system
software architecture. The left half is the program running
in the host computer. It is responsible for global control
and provides support for operation of the system as a
whole. The right half is the program running in the array
element microprocessors. It is responsible for task distri-
bution and processing. The multimicroprocessor software
added to the PC-DOS operating system includes:

• Array control software: This is the interface software
for the host computer and microprocessor array. It is
composed of physical instructions for completing

20 JPRS-CST-92-020
28 October 1992

Figure 2. AP85 System Software Structure
Key: a. Applications programs; b. Compiling programs;
c. Debugging software; d. Expanded FORTRAN library;
e. Array processor control software; f. DOS operating
system; g. Host computer; h. Array; i. Array processor
support software; j. Debugging software; k. Applications
programs

structure startup, reset, and synchronization and for
controlling bus communication.
Debugging software: In a multiprocessor environ-
ment, it can support the operation of static and
dynamic debugging DEBUG programs in parallel
programs. It includes an assembly language level-one
debugging program MDEBUG and a FORTRAN
source program level-one debugging program FDE-
BUG.
High-level language support software: This is achieved
by using the serial FORTRAN source language as a
foundation and adding parallel statement functions.
With a prerequisite of not changing the FORTRAN
compiling program, it can convert the source program
codes written by the FORTRAN language document
into object codes for execution in a multiprocessor
environment.
Array element microprocessor support software: This
is the environment software that remains in the array
element microprocessors to support effective opera-
tion of user programs. Its primary components are the
array element microprocessor initialization program,
self-checking program, communication program, and
a series of software and hardware interrupt service
programs.
Array element microprocessor debugging programs:
These are the debugging programs inside the host
computer that were designed to do dynamic debug-
ging of programs running in the array element micro-
processors. Their functions include setting up break-
points, single-step tracking, I/O port reading and
writing, and so on. They are automatically loaded into

each of the array element microprocessors during
program debugging.
Applications programs: These include a linear equa-
tion group solution program, partial differential equa-
tion solution program, finite element computation
program, multiple integral solution program, hydro-
logic processing and seismic processing computation
examples, and other programs.

VI. Applications

With the objective of testing system performance and
studying parallel algorithms, we selected several repre-
sentative and general problems in engineering com-
puting for computation and solution in the AP85 system.
Existing typical computation examples including using
the SOR method to solve partial differential equation
category-one boundary value problems, linear equation
solutions, multiple integral solutions, matrix operations,
finite element computations, and so on.

The results of the computation tests indicate that in
solving problems with a relatively large number of oper-
ations and relatively small communication overhead, the
AP85 can provide relatively ideal speedup and effi-
ciency. For example, the SOR method was used to solve
partial differential equation category-one boundary
value problems and provide linear equation group loose
iteration method solutions, and we used the Monte Carlo
method and number theory network method for multiple
integral solutions, overall program computations in
finite element computations, matrix multiplication, and
other computations using 16 array elements, and the
system speedup ratio was greater than 10 times.

For the matrix addition method, however, because the
number of array element microprocessor computations was
too small and not large enough in proportion to the amount
of data transmission, the speedup ratio was only about 3
times and the improvement in speed was not significant
enough. In using the G-J method to solve linear equation
groups, the speedup ratio was also not very large in the
system at the present scale, only 3 times-plus. This shows
that certain problems themselves not suitable for parallel
solution or the improper selection of algorithms can result
in a situation in which the system solution rate is not high.

The AP85 system displayed excellent performance when
solving several real engineering problems of users. When
solving optimum parameter selection problems for the
hydrological forecasting model at the Xi'an Central
Hydrology Station, the system speedup ratio was 14.37.
Similar methods were used to solve seismic wave synthesis
problems in engineering seismology in the PDP-11/23 and
AP85 system, and we discovered that the solution speed for
this problem in the AP85 system was 16.7 times the speed of
the solution of the same problem in the PDP-11/23.

JPRS-CST-92-020
28 October 1992

21

VII. Conclusion

The AP85 system was successfully developed in April
1987 and passed ministry- level examination and accep-
tance in August 1987. The AP85 is a relatively general-
purpose prototype that provides a dependable environ-
ment for conducting research on multiprocessor
architecture, parallel algorithms, and multiprocessor
system support software, and it has laid a foundation for
further development of even larger scale or special-
purpose multiprocessor systems.

In all, the AP85 system has the following characteristics:

1. It employs a relatively ideal two-dimensional FNN
interconnection network that facilitates direct mapping
of algorithms for large numbers of applications problems
into the array network.

2. The communication modes are relatively flexible and
it has two communication modes, high-speed DMA
global bus communication and parallel node cross
channel communication.

3. The host computer and array element microprocessors
adopt a similar series of processors and components that
facilitate the use of the host machine software resources.

4. It has excellent expandability that facilitates the
addition of nodes to construct larger scale systems.
Added to the fact that the components and host machine
it uses are the most popular in the market, this makes it
easy to use higher grade compatible components to raise
the system performance grade.

5. There is relatively abundant software support for the
system and it can support the use of high-level language
FORTRAN programming.

6. It is configured with the relatively powerful assembly
language level-one and high-level language level-one
debugging tools MDEBUG and FDEBUG. They include
a FORTRAN source language level-one debugging tool,
which is an entirely new software development tool for
IBM-PC/XT users.

The AP8S system is an experimental multimicroprocessor
system and it still has problems like less-than-powerful
software functions, rather low system performance, and so
on. To improve the overall performance of the system by
numerical grades, we are preparing to focus on develop-
ment work in the following areas.

1. Configuration of a parallel compiling and more perfect
function multiprocessor operating system so that normal
users can use the system without too much difficulty.

2. Adoption of an Intel 80386+80387 high-speed processor
and special vector and floating point operations units for the
processing units of the array element microprocessors and
simultaneous increases in the system scale.

3. Adoption of a higher speed bus and cross channels in
conjunction with configuring each array element micro-
processor with special processing elements to manage
communication and reduce the overhead taken up by
communication.

4. Further development of research work on parallel
algorithms and the establishment of an intersecting
parallel programming environment for users to aid users
in writing high efficiency parallel programs.

Thanks: The authors offer their sincere gratitude to all
members of the AP85 topical group, especially to Wei
Shaoxian [7614 4801 6343], Peng Dewen [1756 1795
2429], Xie Peng [6200 3403], Wang Ji [3769 3444], Liu
Xiaomin [0491 1420 3046], Wang Yongbao [3769 3057
1405], Feng Guangmei [7458 0342 2734], Han Wei [7281
3555], Li Rui'e [2621 3843 1230], and other comrades.
Xi'an Jiaotong University professor Zheng Shouqi [6774
1343 3825], Northwest Polytechnical University profes-
sors Kang Jichang [1660 4949 2490] and Han Beixuan
[7281 0554 6513], and Northwest University professor
Hao Kegang [6787 0344 0474] offered warm support to
this topic, and we would like to express our gratitude.

(references omitted)

Software Pipelining Based VLIW Architecture
92FE0867D Beijing JISUANJIXUEBAO [CHINESE
JOURNAL OF COMPUTERS] in Chinese
Vol 15, No 7, Jul 92 pp 481-490

[Article by Su Bogong [5685 0130 3797], Tang Zhizhong
[3282 1807 1813], Zhao Wei [6392 1550], and Wang
Jian [3769 0494] of the Qinghua University Department
of Computer Science and Technology, Beijing*: "VLIW
Architecture Based on Software Pipelining Technology";
MS received 24 Aug 90]

[Excerpts] Abstract: This paper introduces a VLIW [very
long instruction word] multiprocessing element single-chip
computer now being developed. The architecture of this
machine is based on URPR [unrolling, pipelining,
rerolling] software pipelining technology and uses a pipe-
line register file to reduce the interbody dependent dis-
tance, which enables full exploitation of fine-grained par-
allelism and thereby enhances loop body overlapping and
greatly shortens the length of the loop body after optimi-
zation. The results of simulation experiments indicate that
this architecture can attain high performance when
matched with an optimizing compiler.

I. Introduction

[passage omitted]

Our basic idea was to use current VLSI [very large scale
integration] technology in an effort to integrate several
processing elements on a single chip to construct a signal
processor with a VLIW architecture and to rely on an
optimizing compiler to fully exploit instruction-level
fine-grained parallelism, thereby greatly improving its

22 JPRS-CST-92-020
28 October 1992

performance compared to single processors under iden-
tical technical conditions. In addition, the description
provided below shows that while the adoption of a
VLIW architecture overall requires the use of more
transistors, the overall structure is relatively integral and
simple, so it is not hard to implement.

Because the optimizing compiler has an extremely great
effect on the performance of VLIW architecture, all
types of VLIW architectures are actually based on cer-
tain key optimization algorithms. For example, the
TRACE series from the MULTIFLOW Company is
based on a path scheduling algorithm. The VLIW archi-
tecture we are proposing is based on a URPR software
pipelining loop code optimization algorithm, so we call it
the URPR-1 machine. We proposed the URPR algo-
rithm in 1986 as being very suitable for loop code
optimization in signal processing and image processing,
especially because it has relatively good time benefits as
well as relatively good space benefits. This point is
especially important with single-chip processors that
have a limited amount of storage.

n. Using Hardware Support To Improve the Benefits of
the URPR Algorithm

In signal processing, image processing, and other program
codes, the execution time for loops, especially inner-level
loops, accounts for a very large proportion. Thus, loop

optimization is the key to improving program execution
efficiency and overall system performance. Software pipe-
lining is an effective technique for loop optimization. With
a prerequisite of not changing the program semantics,
iteration is carried out for loop bodies at different levels to
fully exploit the parallelism of hardware resources and
thereby shorten loop execution times.

We proposed the URPR software pipelining algorithm
in 1986'9,111. It has the advantages of a low degree of
computing complexity and good time and space benefits.

Its main principles are that the loop bodies are first opened
up to K in number and these K loop bodies are pipelined
and loaded, after which they are drawn in to obtain a new
optimized loop body whose minimum length is the inter-
body dependent distance D of the original loop body. For
this reason, two types of hardware support are required to
obtain the optimum benefits:

1. Increasing the number of data paths and functional
units to reduce resource conflicts.

2. In a situation of infinite resources, the minimum length
of a loop body after optimization is equal to the loop body
interbody dependent distance D, so hardware support is
required to reduce D. We pointed out in reference [7] that
reducing the register holding time can reduce D. Lam
adopted a variable modulo expansion method in the
WARP machine161 in which the same variable located in

b.

l-l'l
\

RAM

•
•
•

«A»-i- Wr

t • »

.

'
1 ,,

*

8

Ä*»#»*PR e ft

ft8'

»

ft
AU PI 1.8 •'• PI E, P Eo

|

d. *g 4- ' ■# Ä «■ IM
Figure 2. URPR-1 Architecture

Key: a. Operating signals; b. Operating signal generator, c. Beat generator; d. Instruction memory IM; e. Pipeline
register fde PR; f. Memory RAM; g. Address unit AU

JPRS-CST-92-020
28 October 1992

23

different loops is given to different registers to increase the
degree of interbody iteration. Here, we are proposing a
new hardware support method for reducing D: the pipeline
register file, [passage omitted]

HI. URPR-l Architecture

The URPR-l is a fixed point 16-bit single-chip signal
processor. Its architecture is illustrated in Figure 2. It is
composed mainly of nine PEs [processing elements] with
identical structures, the pipeline register file PR, the
instruction memory IM, the data memory RAM, the
address unit ÄU, the related control units, and so on.
The operating cycle of the chip is SOns.

Processors with this type of structure have the following
characteristics:

1. High degree of parallelism in operation. The overall
processor is capable of completing over 100 operations in
one machine cycle. The operations that each processor can
execute in parallel are: one multiplication operation, one
arithmetic logic operation, eight inter-register data trans-
mission operations, and two memory read-write operations.

2. The pipeline register is the core. The pipeline register
can exchange data with the memory and it can transfer
data between the register of its own PE and the corre-
sponding register of an adjacent PE, which greatly
improves the parallelism of operations.

3. Shared main memory. The data registers in the chip
are shared by all the PEs. This structure can simplify

program design and reduce the amount of communica-
tion among PEs, but hardware implementation is rela-
tively complicated.

4. Good expandability. The three main parts—the pipe-
line register, instruction memory, and PEs—establish
corresponding relationships similar to a bit slice struc-
ture. At present it has 9 PEs. If the number of PEs is
increased, increasing the three parts simultaneously is all
that is needed.

A. PE structure

Each PE is composed mainly of a rapid multiplier MUL,
an arithmetic logic unit ALU, 16 registers, a certain
number of multiplex switches, and so on, as illustrated in
Figure 3.

The required number of operations for the ALU and MUL
come from the pipeline register file and the operations
results are sent back to the register file. The operations
units do not have a direct relationship with memory. This
is the architectural design idea of having the registers as the
core, and this type of structure can increase the speed of
data flow in the operations units and fully foster the
efficiency of the rapid operations units.

To make an immediate increase in the number of
operations required by the operations units, we adopted
two measures. One was establishing several data paths
between the registers and the memory and between the
PEs and the corresponding registers. Now, each PE has a
total of 18 data paths to the outside. The second measure

a. b.

*RAM

1
&RAM MRAM* £*£

MUXl/16
J

MUXl/16

■

2T415PE

f. 8t#Ä#Sr?Ji 16 * 16bit

MUXl/16 MUXl/16 I MUXl/16 MUXl/16

MUL ALU

Figure 3. Structural Block Diagram of One PE
Key: a. From/to adjacent PE at left; b. To RAM; c. To RAM; d. From RAM; e. From/to adjacent PE at right; f. Pipeline
register file 16* 16bit

24 JPRS-CST-92-020
28 October 1992

was to make data transmission from the registers to the
outside and operation of the operations units operate in
parallel and use compiler scheduling to ensure that the
required number of operations enter the pipeline register
rue in advance.

The rapid multiplier completes a 16-bit fixed point
multiplication in one machine cycle.

The rapid multiplier is used to achieve division. The
completion of one rapid division requires three multipli-
cations and three ALU operations.

The main ALU operations are logic operations, arith-
metic operations, shift operations, and so on. Among
them, three address forms are used for logic operations
and arithmetic operations: two source addresses and one
target address. Besides using one source address and one
target address, shift operations also use a 4-bit expres-
sion shift bit number of another source address.

B. Pipeline register file

The 16 registers in each PE are divided into three
categories:

1. Local registers, a total of eight, that are used for
storing only those constants and variables that are read
and written in their own PE. The function of these
registers is identical to general purpose registers in
traditional computers.

&

n
PE

2. Leftward pipeline registers, a total of six. These registers
have two uses. One is vertical pipelining to establish a data
path between two arbitrary adjacent vertical registers. The
use of vertical pipelining can directly achieve assignment
operations without going through the ALU. The second is
horizontal pipelining, flowing leftward toward the corre-
sponding register on the adjacent PE. These types of
pipelining can be used to achieve inter-segment variable
transmission, meaning that variables are read out and
written in in the same loop body.

3. Rightward pipeline registers, a total of two. Besides
having vertical pipelining functions, these registers can
also flow rightward to the corresponding adjacent registers.
The use of this type of horizontal pipelining permits the
transmission of inter-segment recursive variables,
meaning variables that are written in in the same loop
body but only read out during the next or several later loop
bodies.

All of these three types of registers are combined to
construct a pipeline register file. Figure 4 illustrates the
connection relationship for eight of the pipeline registers.

Data can be transmitted via two methods among the
registers inside each PE:

1. Via vertical pipelining operations among adjacent
pipeline registers.

2. Via the ALU.

• • • t •

_•- Ri

PE

• i •
• i •

Rs R5 • • •
' ■ ; •

R6 RS

*

•
• • •

■

1
•

1 _ j,

't

•

P_ D- _ •
i • 7

PE,;- i PE,

PE

*

4P
PE

d.

Figure 4* Explanation of Pipeline Register Connection Relationships
Key: a. To adjacent PE at left; b. From adjecent PE at left; c. To adjacent PE at right; d. From adjacent PE at right

JPRS-CST-92-020
28 October 1992

25

The compiler ensures that every effort is made to use the
first method by allocating the two variables to be trans-
ferred into the two adjacent registers, and it uses the
second method only when necessary.

there are also two methods for data transmission
between the registers inside each PE and the outside:

1. There are direct data paths between the pipeline registers
and the registers in adjacent PE with the same number.

2. In one machine cycle, each PE can exchange two
pieces of data with the memory in the chip.

The latter method is mainly used to access the original
data required in the operation and save intermediate
results. Data transmission between PE should make
every effort to use the first method and the second
method is only used when necessary.

C. Instruction set

Because the URPR-1 is oriented toward signal processing
and image processing, we collected several dozen types of
common signal processing and image processing algo-
rithms and used the URPR software pipelining algorithm
and optimizing compiler technology to carry out manual

45 • «• 45 14 • •
PEnI««« |PEo|RW9|... |RWQ1BR"]

programming and optimization analysis of these algo-
rithms. We also took into consideration the development
situation for VLSI technology and realistic possibilities to
design the instruction set described below.

The broad instructions for the URPR-1 have a total of
558 bits and are composed of three parts, as illustrated in
Figure 5(a).

Each part is defined as follows:

1. Each PE field has 45 bits in a format as illustrated in
Figure 5(b). In it, E is the multiplication enable bit.
When E is set, (SR2)*(SR,)-»DR is executed. Otherwise,
there is no operation. OP is the ALU operation code that
includes arithmetic logic operations, shift operations,
and two types of multiplication support operations.
Ro,...,R7 are the register pipelining control fields and
each register uses 2 bits for control.

2. Each memory read/write field has 14 bits in a format
as illustrated in Figure 5(c). In it, the four types of codes
for F represent, respectively, no read/write, memory
write, memory read, and memory read based on FFT
butterfly address conversion. The PE# and REG#
operate together to point to a register in the register file
and AC# is the number of the address counter. See
Section D below for the address formation process.

14 !3

(a)Instruction format

£ |RS2[RS.i|DR | OP (RS2 lRSt | DR~TR7

•MUL ALU-
(b)PE field

i
PIPELINE REG.-

/ F | PE* 1REG#1AC#1
(C)RW field

1 OP PEs | AD {
(d)BR field

Figure 5. Instruction Format for URPR-1 Machine

26 JPRS-CST-92-020
28 October 1992

3. The branch control field BR. We have stipulated that
only one PE is permitted to execute a branch operation
in one machine cycle. The format of the field is illus-
trated in Figure 5(d). In it, OP is the operation code, and
its branch conditions come from the ALU operations
result ofthat PE that is pointed out by the PE# field. AD
is the branch target address, and it points to an instruc-
tion in the instruction memory IM. In addition, to match
up with the conditional branch statements in high-level
languages, we did not establish a condition code register.
The branch conditions are obtained directly from the
results of execution of the instruction.

D. Address unit AU

The five memories operating in parallel in the chip can
read and write 10 pieces of data in one machine cycle
that are controlled, respectively, by the 10 read/write
fields in the instruction. Each PE is permitted to access
the memory two times in one machine cycle but the total
number of accesses by the nine PEs cannot exceed 10
times. Thus, the five memories and nine PEs actually
constitute a 5*18*16 multiplex cross switch, or they may
be called five memory busses, as illustrated in Figure 6.
In the figure, PR„,...,PR8 represent, respectively, the
pipeline registers in the nine PEs. The data busses for the
memories are connected to each of the pipeline registers
via a multiplex switch, latch, and three-state gate. AG is
the address generator that is used to form the address for

PR i

memory read/write. Its primary function is to achieve
FFT butterfly address conversions. Moreover, it also
includes five address registers and five 16-to-l multiplex
switches, and so on. The five address generators are used
at different times and provide 10 addresses in one
machine cycle. Address computation and memory read/
write operations work in parallel in a pipeline mode.
The address counter is only loaded once at the time of
machine initialization. During the program running pro-
cess, a 1 is added to all 16 address counters when each
loop is finished.

IV. An Example of an FFT Butterfly Operation
We will use a base-2 complex 1024 point FFT innermost
layer loop butterfly operation as an example of URPR-1
system operation, [passage omitted]

Figures 7(c) and (d) [not reproduced] show that when the
URPR-1 machine is computing an FFT innermost layer
loop, each machine cycle carries out one butterfly opera-
tion. Completion of the entire FFT computation requires
10*512 butterfly computations, so the time required is:
50ns*10*512 - 0.256ms. Adding the pipeline filling and
emptying time, the URPR-1 can complete base-2 complex
1024 point FFT computations in 0.26 ms.

V. Discussion
Table 1 compares the URPR-1 with the TRACE and
WARP VLIW architecture machines in the two areas of
architecture and program design.

RAM 4 AG4

RAMx Ad.

RAMp AG.

PRTI iPRol address counter 16 » lGb|t

Figure 6. Composition of Address Unit AU

JPRS-CST-92-020
28 October 1992

27

Table 1. Comparison of Three Types of Machines
Machine Architecture Program design

URPR-1 16-bit fixed point VLIW machine using a shared internal
memory multiple PE structure, data transmitted between
PEs via a pipeline register file, data transmission speed
160MWords/s.

Users use the C language for programming and employ an
optimizing compiler with two-level software pipelining
technology to develop instruction-level fine-grained
parallelism, making full use of all of the machine's PEs and
all functional units within each PE.

TRACE A large VLIW computer configured with several integer
processing elements and floating point processing elements,
with busses interconnecting each of the processing elements
with the others and the processing elements with the
internal memory, each functional unit utilizes a pipelining
structure.

Users can use the C or FORTRAN languages for program-
ming and use a multiplex scheduling algorithm compiler to
develop instruction-level fine- grained parallelism.

WARP An MIMD structure composed of 10 cells, adjacent cells are
interconnected via two data paths and one address path,
each cell has a VLIW structure, with rather large local
memory capacity and using a pipelining structure 32-bit
floating point adder and multiplier.

Users use W2 language for programming, the compiler uses
software pipelining technology to develop fine-grained
parallelism for the program in each cell, coarse-grained
parallelism among the cells is developed by users or by
other compilers.

Comparing the URPR-1 and the TRACE, the TRACE is
a superminicomputer oriented toward scientific com-
puting that is configured with several integer processing
and floating point processing elements, and the elements
are interconnected via busses. The URPR-1 is a VLIW
single-chip machine oriented toward signal processing
and is only configured with fixed point multiplication
and fixed point addition functional units. Adjacent PEs
transmit data via pipeline registers. Compared to the bus
arrangement, it has a broad bandwidth and is more
appropriate for use in VLSI implementation. The opti-
mizing compiler in the URPR-1 uses two-level software
pipelining technology for loop body optimization, which
is more effective that the route scheduling method
employed in the TRACE compiler.

Comparing the URPR-1 and the WARP, the WARP is
composed of 10 elements with more powerful functions
and there is no shared memory for each element. Adja-
cent elements are configured with two data paths and
one address path. In the URPR-1, however, adjacent PEs
can transmit a maximum of eight pieces of data simul-
taneously via the pipeline registers, which enables full
exploitation of fine-grained parallelism. In the area of
program design, because there is coarse-grained paral-
lelism among the elements in the WARP, partitioning
must be done by the programmer, which makes user
programming more difficult. Moreover, WARP requires
users to use the W2 language for programming, so users
cannot directly utilize existing applications programs in
the signal processing and image processing realm.
URPR-1 users do not have to partition the programs and
can use the C language for programming, which aids in
transplanting existing applications programs.

Comparing the URPR-1 with pipelining processors, the
URPR-1 does not link all of its functional units into a
hardware controlled pipeline structure. Instead, applica-
tions software pipelining technology partitions loop pro-
grams into each of the functional units. During the
process of program execution, each functional unit
seems to be linked into a software controlled dynamic
pipeline, which gives it greater flexibility than pipeline

processors so that it can be adapted to all types of
applications programs and more effectively solve cutouts
and other problems encountered in pipeline processors.

VI. Conclusion

The URPR-1 is a single-chip signal processor that uses a
VLIW architecture. It has a 16-bit fixed point word length,
an instruction word width of 558 bits, 2K of RAM and 2K
of ROM on the chip, and about 600,000 transistors and
128 pins on the chip. Most of the chip is taken up by
memory, registers, and non-complicated PEs.

At an operating cycle of 50ns, the peak computation rate
is 360 MIPS and the signal transmission rate between
PEs is 160 MWords/second.

The URPR-1 is configured with an optimizing compiler
(see the first page of the next article),. This compiler can
convert applications programs written in the C language
into machine codes and fully exploit instruction-level
fine- grained parallelism. The prototype for the compiler
has now been completed and the hardware design is in
the simulation experiment stage.

Table 2. Simulation Results
Complex 1024 point FFT (base 2) 0.26 ms

FIR [finite impulse response] filtering
(one accumulation)

6ns

IIR [infinite impulse response] filtering
(eight coefficients)

100ns

Lattice filtering 50ns

Vector point accumulation (each element) 12.5ns

The results of simulation experiments for typical signal
processing programs are given in Table 2. We expect
broad application of the URPR-1 in signal processing,
image processing, and other applications realms.

We offer our sincere thanks to professor Yue Zhenwu
[1471 7201 0063] of the Qinghua University Microelec-
tronics Institute for his useful assistance.

28 JPRS-CST-92-020
28 October 1992

"This project was funded by the National Natural Science
Fund. Su Bogong is a professor who is involved in research
in the area of computer architecture. Tang Zhizhong is an
associate professor who is involved in research on com-
puter architecture. Zhao Wei has a Master's degree and is
an engineer. He is involved in research on computer
architecture. Wang Jian is a Ph.D. student.

References

[I] M. Annaratone, et al., Warp Architecture and Imple-
mentation, Proceedings of the 13rd [as published] Interna-
tional Symposium on Computer Architecture, ACM, 1985.

[2] R. P. Colwell, et al., A VLIW Architecture for a Trace
Scheduling Computer, IEEE Transactions on Com-
puters, Vol 37, No 8, 1988.

[3] J. A. Fisher, Trace Scheduling: A Technique for
Global Microcode Compaction, IEEE Transactions on
Computers, Vol C-30, No 7, 1981 pp 478-490.

[4] H. T. Kung, Network-Based Multicomputers: Redefined
High Performance Computing in the 1990s, Proceedings of
the Decennial Caltech Conference on VLSI, 1989.

[5] J. Labrousse and G. Slavenburg, A 50 MHz Micro-
processor With a Very Long Instruction Word Architec-
ture, Proceedings of 1990 IEEE International Solid State
Circuits Conference, 1990 pp 44-45.

[6] M. S. Lam, Software Pipelining: An Effective Sched-
uling Technique for VLIW Machines, Proceedings of the
Sigplan '88 Conference on Programming Language
Design and Implementation, Atlanta, 1988.

[7] R. Mueller, B. Su, et al., A Case Study in Signal
Processing Microprogramming Using the URPR Soft-
ware Pipelining Techniques, Proceedings of the 19th
Annual Workshop on Microprogramming (MICRO-19),
1986 pp 109-115.

[8] B. R. Rau et al., The Cydra-5 Departmental Super-
computer Design Philosophies, Decisions, and Trade-
offs, Computer, 1989 pp 12-35.

[9] B. Su, S. Ding, and J. Xia, URPR—An Extension of
URCR for Software Pipelining, Proceedings of MICRO-
19, 1986 pp 104-108.

[10] B. Su, S. Ding, J. Wang, and J. Xia, GURPR-A
Method for Global Software Pipelining, Proceedings of
MICRO-20, 1987.

[II] Su Bogong [5685 0130 3797], URPR—A Practical
New Software Pipelining Method, JISUANJIXUEBAO
[Chinese Journal of Computers], Vol 11, No 5, 1988.

VLIW Optimizing Compiler Adopting Two-Level
Software Pipelining
92FE0867E Beijing JISUANJI XUEBAO [CHINESE
JOURNAL OF COMPUTERS] in Chinese
Vol 15, No 7, Jul 92 pp 491-498, 506

[Article by Su Bogong [5685 0130 3797], Wang Jian [3769
0494], Wu Yimin [0702 4135 3046], and Tang Zhizhong
[3282 1807 1813] of the Qinghua University Department of
Computer Science and Technology, Beijing*: "VLIW Opti-
mizing Compiler Adopting Two-Level Software Pipelin-
ing"; MS received 24 Aug 90]

[Excerpts] Abstract This article begins by proposing a com-
piling technique that is capable of fully exploiting loop
program instruction-level fine-grained parallelism: two-
level software pipelining. This technology is based on the
URPR [unrolling, pipelining, and rerolling] software pipe-
lining algorithm, which organically integrates resource allo-
cation and code optimization. It then describes a VLIW
optimizing compiler that adopts two-level software pipe-
lining and concludes with an example of an FFT inner loop
compiling process and the results of preliminary experi-
ments.

I. Introduction

VLIW (very long instruction word) computer technology
has attracted people's attention because of its superior
performance/price ratio. In less than 10 years' time,
TRACE, Cydra5, Warp, and several other products have
appeared. Their applications range from scientific com-
puting to signal processing, image processing, and other
fields. VLIW development experience indicates that,
besides the design of the architecture itself, the main key
problem is to design an optimizing compiler capable of fully
exploiting instruction-level fine-grained parallelism16,12'.
Software pipelining is an effective technique for instruction-
level loop optimization12' and has been adopted in several
VLIW compilers13'. The URPR software pipelining algo-
rithm we proposed in 1986 has rather good time benefits
and space benefits as well rather low computing complexity,
and other advantages'7'. Recently, we used the URPR
algorithm as a basis for designing the URPR-1, which is
suitable for signal processing and image processing. This is
a multiprocessor architecture that can be implemented on a
single chip (see the previous article regarding the URPR-1
architecture). The present article provides a preliminary
description of the optimizing compiler that corresponds to
the URPR-1 architecture. In this compiler, we proposed and
implemented a new compiling technique that integrates
resource allocation with code optimization: two-level soft-
ware pipelining, [passage omitted]

III. Design Ideas and Overall Structure for the URPR-1
Optimizing Compiler

Because most signal processing applications programs
are written in the C language, we started with the
convenience of users and took into consideration pro-
gram transplantability. We selected the C language as the
source language for the URPR-1 optimizing compiler.

JPRS-CST-92-020
28 October 1992

29

Besides conventional local and global compression optimi-
zation methods, the basic optimization measure for com-
pilers is URPR software pipelining technology. In addi-
tion, to fully exploit the intrabody and interbody
parallelism of loop bodies and thereby make full use of the
PE layer and functional unit [FU] layer hardware paral-
lelism in the machine architecture, the compiler adopts a
two-level software pipelining technique that integrates
resource allocation with code optimization. The compiler
also uses the loop preprocessing algorithm and new loop
body compression algorithm proposed in reference [11] to
solve loop interrelationship problems, thereby further
improving the optimization results of URPR software
pipelining technology. The compiler applies the GURPR*
algorithm proposed in reference [9] to solve global soft-
ware pipelining problems, which enables the compiler to
process the innermost loops that are the basic blocks of
loop bodies and to process arbitrary complex loops in loop
bodies that contain branches.

The URPR-1 optimizing compiler is composed of six
modules, as shown in Figure 5 [not reproduced]. Like
conventional compilers, its front end is not related to the
machine and its input C language programs carry out
lexical analysis and syntactic analysis and generate four-
element intermediate codes.

The basic blocks that control the ranking of flow analysis
partitioning of intermediate codes form the program
flow chart and examine all loops.

Data flow analysis includes local analysis and global
analysis. Local analysis constructs the DDG of all basic
blocks and simultaneously carries out local optimization
of traditional intermediate codes. Global analysis col-
lects the data-related information among all basic blocks
and derives all global variables, after which it carries out
global optimization of traditional intermediate codes.

Two-level software pipelining composed of the three
modules of level-one software pipelining, register alloca-
tion, and level-two software pipelining completes code
generation and optimization. The level-one software
pipelining module is composed of four sub-modules:
data relational analysis, operation scheduling, URPR
software pipelining, and functional units (such as adders
and multipliers). The level-two software pipelining
module is composed of five sub-modules: data relational

analysis, intrabody compression, URPR software pipe-
lining, duplicate resource (such as the read/write port of
each PE) and public resource (such as busses) allocation,
and loading and emptying part construction.

Register allocation in the URPR-1 optimizing compiler
is different from register allocation in traditional com-
pilers. The concern in register allocation in traditional
compilers focuses on reducing the number of accesses of
internal memory in object codes. Although register allo-
cation in the URPR- 1 optimizing compiler also solves
this problem, even more important problems are: 1)
Allocating a group of registers in the pipeline register file
to distribute those constant value operations and refer-
ence operations in different PEs. This group of registers
constructs a register chain and inserts data transmission
operations among the PEs; 2) The pipeline chain in the
pipeline register file is used for intermediate code assign-
ment statements. The register allocation module uses
information generated by level-one software pipelining
for effective resolution of these two problems.

IV. Examples

We used 1024 base-2 complex FFT innermost layer loop
butterfly operations as examples of the operation of the
URPR-1 optimizing compiler (see Figure 7 in the article
"VLIW Architecture Based On Software Pipelining
Technology" above) [not reproduced].

Y. Experiment and Discussion

The prototype of the URPR-1 optimizing compiler has
been implemented in a SUN-3 workstation. We used this
prototype to conduct some experiments on inner loops
in typical signal processing and image processing pro-
grams. The results of the initial experiments given in
Table 1 show that the optimization time benefits and
space benefits of the URPR-1 optimizing compiler both
approximate manual coding levels. This is the result of
adopting the URPR algorithm and two-level software
pipelining technique. In addition, its computing com-
plexity is 0(m2), where m is the number of statements in
the inner loop. Table 2 shows that the compiling time of
the optimizing compiler is acceptable.

There are differences between the URPR-1 optimizing
compiler and other VLIW optimizing compilers. Table 3
compares the URPR-1 compiler with the Warp compiler
and Bulldog compiler.

30 JPRS-CST-92-020
28 October 1992

Table 1. Inner Loop Optimization Results For Several Typical Signal/Image Processing Algorithms for the URPR-1
Optimizing Compiler (Execution time (number of cycles)/Space taken up (number of instructions))

Algorithm Sequence code Optimizing compiler output code Manual coding
FFT 20n/20 (n + Ki)/l (n-Kiyi

Convolution and correlation 53n/53 (n + K2)/l (n + K2)/l

FIR filtering 35n/35 (n + K3yi (n + K3)/l

LATTICE filtering 30n/30 (n + K4VI (n + K4VI

IIR filtering 33n/33 (2n + K5)/2 (2n + K5V2

LPC [linear predictive coding] coding 23n/23 (2n + K«)/2 (2n + K6V2

3X3 Laplacian edge detection 79n/79 (4n + K7)/4 —
Computing Gradient (using 9X9 canny operator) 112n/112 (4n + K8V4 ■.—■-.

n: Number of loops. Ki, K2, K3, K4, Kj, Kg, K7, and Kg are constants unrelated to n and represent the execution time for the loading and emp-
tying part

Table 2. Inner Loop Compiling Times For Several Typical Signal/Image Processing Algorithms For the URPR-1
Optimizing Compiler in a SUN-3 Workstation

Algorithm Compiling time (a)
FFT 5.7

Convolution and correlation 7.7
FIR filtering 4.8
LATTICE filtering 4.6
IIR filtering 4.7
LPC coding 3.9

3X3 Laplacian edge detection 10.6

Computing Gradient (using 9X9 canny operator) 14.8

Table 3. Comparison of URPR-1 Compiler With Other Compilers
Compiler Is two-level hardware

parallelism partitioned?
Optimizing technique used Are phases Integrated?

PE lerel FU level
URPR-1 compiler Yes Software pipelining Software pipelining Yes

Warp compiler Yes User develops coarse-
grained parallelism

Software pipelining No

Bulldog compiler No Loops opened and path scheduling method used for
compression

Yes

*This topic was funded by the National Natural Science
Fund.

References

[1] A. Aiken and A. Nicolau, Perfect Pipelining: A New
Loop Parallelization Technique, Research Report, 87-
873, Department of Computer Science, Cornell Univer-
sity, 1987.

[2] A. E. Charlesworth, An Approach to Scientific Array
Processing: The Architecture Design of the AP-
120B/FPS-164 Family, Computer, No 9,1981 pp 18- 27.

[3] J. R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures, The MIT Press, Cambridge, Mass., 1985.

[4] F. Gasperoni, Compilation Techniques for VLIW
Architectures, Technical Report 435, New York Univer-
sity, 1989.

[5] M. S. Lam, Software Pipelining: An Effective Sched-
uling Technique for VLIW Machines, Proceedings of the
SIGPLAN '88 Conference on Programming Language
Design and Implementation, Atlanta, 1988.

[6] R. Mueller, B. Su, et al., A Case Study in Signal
Processing Microprogramming Using the URPR Soft-
ware Pipelining Techniques, Proceedings of the 19th
Annual Workshop on Microprogramming (MICRO-19),
1986 pp 109-115.

JPRS-CST-92-020
28 October 1992

31

[7] B. Su et al., URPR—An Extension of URCR for
Software Pipelining, Proceedings of MICRO-19, 1986.

[8] B. Su, S. Ding, J. Wang, and J. Xia, GURPR—A
Method for Global Software Pipelining, Proceedings of
MICRO-20, 1987.

[9] Su Bogong [5685 0130 3797] et al., GURPR—A
New Global Software Pipelining Method, 4th National
Distributed System and Firmware Engineering Aca-
demic Conference, 1990.

[10] B. Su, J. Wang, Z. Tang, W. Zhao, and Y. Wu, A
Software Pipelining Based VLIW Architecture and Opti-
mizing Compiler, Proceedings of MICRO-23, 1990.

[11] B. Su and J. Wang, Loop-Carried Dependence and
the General URPR Software Pipelining Approach, Pro-
ceedings of the 24th Hawaii International Conference on
System Science (HICSS-24), 1991.

[12] R. F. Touzeau, A Fortran Compiler for the FPS-164
Scientific Computer, Proceedings of the ACM SIG-
PLAN Symposium on Compiler Construction, 1984 pp
48-57.

